Abstract
The design of hierarchical tubular nanostructure is a big challenge to improve the photoelectrochemical (PEC) performance. Herein, we designed and synthesized hierarchical ZnFe2O4 (ZFO) nanotube arrays grown on FTO substrates through self-sacrifice template routes. The well-defined ZFO nanotube arrays with a pore diameter of 150 ~ 200 nm provided special configuration for PEC water splitting, such as large specific surface area, direct electron transport pathway, and low surface charge recombination rate. As expected, the optimized ZFO nanotube arrays with non-noble metal molybdenum sulfide as co-catalyst exhibited excellent PEC activity (maximum photocurrent density up to 0.9 mA cm−2 at 1.23 V vs. RHE) under AM 1.5G simulated sunlight (100 mW cm−2). And the photocurrent density of the ZFO/MoSx electrode can maintain ca. 72.0% initial value under 1 h continuous light illumination. Via intensity-modulated photocurrent spectroscopy analysis, the enhanced mechanism of PEC water oxidation was discovered, that is, the improved surface charge separation efficiency aroused by the increased charge transfer efficiency for the optimized ZFO/MoSx electrode. Low charge recombination and fast carrier transfer accelerated the water oxidation kinetics at the electrode/electrolyte interface. This work provides a valuable insight to understand the interfacial charge transfer kinetics for the catalyst decorated photoelectrode toward efficient solar water oxidation.
This is a preview of subscription content, access via your institution.







References
- 1
Young JL, Steiner MA, Döscher H, France RM, Turner JA (2017) Todd G Deutsch. Nat Energy 2:17028–17036. https://doi.org/10.1038/nenergy.2017.28
- 2
Jang JW, Du C, Ye Y et al (2015) Nat Commun 6:7447. https://doi.org/10.1038/ncomms8447
- 3
Gu J, Aguiar JA, Ferrere S et al (2017) Nat Energy 2:7447–7452. https://doi.org/10.1038/nenergy.2016.192
- 4
Li S, Liu C, Chen P, Lv W, Liu G (2020) J Catal 382:212–227. https://doi.org/10.1016/j.jcat.2019.12.030
- 5
Feng D, Qu J, Zhang R et al (2020) J Catal 381:501–507. https://doi.org/10.1016/j.jcat.2019.11.033
- 6
Xiao J, Fan L, Zhao F, Huang Z, Zhou SF, Zhan G (2020) J Catal 381:139–149. https://doi.org/10.1016/j.jcat.2019.10.033
- 7
Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev 43:7520–7535. https://doi.org/10.1039/c3cs60378d
- 8
JMS Shannon W. Boettcher, Morgan C. Putnam, Emily L. Warren, Daniel B. Turner-Evans, Michael D. Kelzenberg, James R. Maiolo, Harry A. Atwater, Nathan S. Lewis (2010) Science 327: 185–187. Doi:https://doi.org/10.1126/science.1180783
- 9
Wu M, Chen WJ, Shen YH, Huang FZ, Li CH, Li SK (2014) ACS Appl Mater Interfaces 6:15052–15060. https://doi.org/10.1021/am503044f
- 10
X Zhu, N Guijarro, Y Liu, et al. (2018) Adv Mater: 1801612–1801618. Doi:https://doi.org/10.1002/adma.201801612
- 11
Kim JH, Jang YJ, Choi SH et al (2018) J Mater Chem A 6:12693–12700. https://doi.org/10.1039/c8ta02161a
- 12
Y Li, R Cao, L Li, et al. (2020) Small: 1906735–1906745. Doi:https://doi.org/10.1002/smll.201906735
- 13
L Chai, Z Hu, X Wang, et al. (2020) Advanced Science: 1903195–1903205. Doi:https://doi.org/10.1002/advs.201903195
- 14
Bai Z, Yan X, Li Y, Kang Z, Cao S, Zhang Y (2016) Adv Energy Mater 6:1501459–1501467. https://doi.org/10.1002/aenm.201501459
- 15
Shi L, Zhou W, Li Z, Koul S, Kushima A, Yang Y (2018) ACS Nano 12:6335–6342. https://doi.org/10.1021/acsnano.8b03940
- 16
Chen W, Wang T, Xue J, Li S, Wang Z, Sun S (2017) Small 13:1602420–1602428. https://doi.org/10.1002/smll.201602420
- 17
Jiang B, Han C, Li B, He Y, Lin Z (2016) ACS Nano 10:2728–2735. https://doi.org/10.1021/acsnano.5b07806
- 18
Wang K, Chen J, Zhou W et al (2008) Adv Mater 20:3248–3253. https://doi.org/10.1002/adma.200800145
- 19
Patnaik S, Das KK, Mohanty A, Parida K (2018) Catal Today 315:52–66. https://doi.org/10.1016/j.cattod.2018.04.008
- 20
Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) Adv Funct Mater 20:2165–2174. https://doi.org/10.1002/adfm.200902390
- 21
Yang T, Xue J, Tan H et al (2018) J Mater Chem A 6:1210–1218. https://doi.org/10.1039/c7ta07798j
- 22
Hou L, Hua H, Lian L, Cao H, Zhu S, Yuan C (2015) Chem Eur J 21:13012–13019. https://doi.org/10.1002/chem.201501876
- 23
Guo X, Zhu H, Si M et al (2014) J Phys Chem C 118:30145–30152. https://doi.org/10.1021/jp507991e
- 24
Shen L, Yu L, Yu XY, Zhang X, Lou XW (2015) Angew Chem Int Ed 54:1868–1872. https://doi.org/10.1002/anie.201409776
- 25
McDonald KJ, Choi KS (2011) Chem Mater 23:4863–4869. https://doi.org/10.1021/cm202399g
- 26
Zheng XL, Dinh CT, de Arquer FP et al (2016) Small 12:3181–3188. https://doi.org/10.1002/smll.201600534
- 27
Zhou Y, Zhang L, Lin L et al (2017) Nano Lett 17:8012–8017. https://doi.org/10.1021/acs.nanolett.7b04626
- 28
Wei J, Yin Z, Chen SC, Cai D, Zheng Q (2016) RSC Adv 6:39137–39143. https://doi.org/10.1039/c6ra01204c
- 29
Shao M, Ning F, Wei M, Evans DG, Duan X (2014) Adv Funct Mater 24:580–586. https://doi.org/10.1002/adfm.201301889
- 30
Guo L, Yang Z, Marcus K et al (2018) Energy Environ Sci 11:106–114. https://doi.org/10.1039/c7ee02464a
- 31
Zeng Y, Yang T, Li C et al (2019) Appl Catal B 245:469–476. https://doi.org/10.1016/j.apcatb.2019.01.011
- 32
Sahu TK, Shah AK, Gogoi G, Patra AS, Ansari MS, Qureshi M (2018) Chem Commun 54:10483–10486. https://doi.org/10.1039/c8cc04882g
- 33
Li X, Li T, Ma Y et al (2018) Adv Energy Mater 8:1801357–1801365. https://doi.org/10.1002/aenm.201801357
- 34
Li J, Meng Q, Zhang Y et al (2019) Nat Commun 10:93–101. https://doi.org/10.1038/s41467-018-07831-5
- 35
Guo Y, Zhang N, Wang X et al (2017) J Mater Chem A 5:7571–7577. https://doi.org/10.1039/c6ta11134c
- 36
Zhou X, Licklederer M, Schmuki P (2016) Electrochem Commun 73:33–37. https://doi.org/10.1016/j.elecom.2016.10.008
- 37
Ahn HJ, Yoon KY, Kwak MJ, Jang JH (2016) Angew Chem Int Ed 55:9922–9926. https://doi.org/10.1002/anie.201603666
- 38
Yu F, Li F, Yao T et al (2017) ACS Catal 7:1868–1874. https://doi.org/10.1021/acscatal.6b03483
- 39
Liu G, Ye S, Yan P et al (2016) Energy Environ Sci 9:1327–1334. https://doi.org/10.1039/c5ee03802b
- 40
Gao Y, Hamann TW (2017) Chem Commun 53:1285–1288. https://doi.org/10.1039/c6cc09029j
- 41
Peter LM, Wijayantha KG, Tahir AA (2012) Faraday Discuss 155:309–322. https://doi.org/10.1039/c1fd00079a
- 42
Thorne JE, Jang JW, Liu EY, Wang D (2016) Chem Sci 7:3347–3354. https://doi.org/10.1039/c5sc04519c
- 43
Zachaus C, Abdi FF, Peter LM, van de Krol R (2017) Chem Sci 8:3712–3719. https://doi.org/10.1039/c7sc00363c
Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 21771001, 51872002), the Anhui Provincial Natural Science Foundation (No. 1708085ME120), the Program of Anhui Scientific and Technical Leaders Reserve Candidates (2018RH168), the Scholar Program for the Outstanding Innovative Talent of College Discipline (Specialty), doctoral start-up fund and open fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University. Funding was also provided by University Natural Science Research Project of Anhui Province (Grant No. KJ2017A007).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Handling Editor: Pedro Camargo.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lv, C., Liu, P., Huang, F. et al. Carrier dynamics in hierarchical ZnFe2O4 nanotube arrays and their roles in boosting photoelectrochemical water oxidation. J Mater Sci (2021). https://doi.org/10.1007/s10853-021-05900-7
Received:
Accepted:
Published: