Carrier dynamics in hierarchical ZnFe2O4 nanotube arrays and their roles in boosting photoelectrochemical water oxidation

Abstract

The design of hierarchical tubular nanostructure is a big challenge to improve the photoelectrochemical (PEC) performance. Herein, we designed and synthesized hierarchical ZnFe2O4 (ZFO) nanotube arrays grown on FTO substrates through self-sacrifice template routes. The well-defined ZFO nanotube arrays with a pore diameter of 150 ~ 200 nm provided special configuration for PEC water splitting, such as large specific surface area, direct electron transport pathway, and low surface charge recombination rate. As expected, the optimized ZFO nanotube arrays with non-noble metal molybdenum sulfide as co-catalyst exhibited excellent PEC activity (maximum photocurrent density up to 0.9 mA cm−2 at 1.23 V vs. RHE) under AM 1.5G simulated sunlight (100 mW cm−2). And the photocurrent density of the ZFO/MoSx electrode can maintain ca. 72.0% initial value under 1 h continuous light illumination. Via intensity-modulated photocurrent spectroscopy analysis, the enhanced mechanism of PEC water oxidation was discovered, that is, the improved surface charge separation efficiency aroused by the increased charge transfer efficiency for the optimized ZFO/MoSx electrode. Low charge recombination and fast carrier transfer accelerated the water oxidation kinetics at the electrode/electrolyte interface. This work provides a valuable insight to understand the interfacial charge transfer kinetics for the catalyst decorated photoelectrode toward efficient solar water oxidation.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1

    Young JL, Steiner MA, Döscher H, France RM, Turner JA (2017) Todd G Deutsch. Nat Energy 2:17028–17036. https://doi.org/10.1038/nenergy.2017.28

    CAS  Article  Google Scholar 

  2. 2

    Jang JW, Du C, Ye Y et al (2015) Nat Commun 6:7447. https://doi.org/10.1038/ncomms8447

    Article  Google Scholar 

  3. 3

    Gu J, Aguiar JA, Ferrere S et al (2017) Nat Energy 2:7447–7452. https://doi.org/10.1038/nenergy.2016.192

    CAS  Article  Google Scholar 

  4. 4

    Li S, Liu C, Chen P, Lv W, Liu G (2020) J Catal 382:212–227. https://doi.org/10.1016/j.jcat.2019.12.030

    CAS  Article  Google Scholar 

  5. 5

    Feng D, Qu J, Zhang R et al (2020) J Catal 381:501–507. https://doi.org/10.1016/j.jcat.2019.11.033

    CAS  Article  Google Scholar 

  6. 6

    Xiao J, Fan L, Zhao F, Huang Z, Zhou SF, Zhan G (2020) J Catal 381:139–149. https://doi.org/10.1016/j.jcat.2019.10.033

    CAS  Article  Google Scholar 

  7. 7

    Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev 43:7520–7535. https://doi.org/10.1039/c3cs60378d

    CAS  Article  Google Scholar 

  8. 8

    JMS Shannon W. Boettcher, Morgan C. Putnam, Emily L. Warren, Daniel B. Turner-Evans, Michael D. Kelzenberg, James R. Maiolo, Harry A. Atwater, Nathan S. Lewis (2010) Science 327: 185–187. Doi:https://doi.org/10.1126/science.1180783

  9. 9

    Wu M, Chen WJ, Shen YH, Huang FZ, Li CH, Li SK (2014) ACS Appl Mater Interfaces 6:15052–15060. https://doi.org/10.1021/am503044f

    CAS  Article  Google Scholar 

  10. 10

    X Zhu, N Guijarro, Y Liu, et al. (2018) Adv Mater: 1801612–1801618. Doi:https://doi.org/10.1002/adma.201801612

  11. 11

    Kim JH, Jang YJ, Choi SH et al (2018) J Mater Chem A 6:12693–12700. https://doi.org/10.1039/c8ta02161a

    CAS  Article  Google Scholar 

  12. 12

    Y Li, R Cao, L Li, et al. (2020) Small: 1906735–1906745. Doi:https://doi.org/10.1002/smll.201906735

  13. 13

    L Chai, Z Hu, X Wang, et al. (2020) Advanced Science: 1903195–1903205. Doi:https://doi.org/10.1002/advs.201903195

  14. 14

    Bai Z, Yan X, Li Y, Kang Z, Cao S, Zhang Y (2016) Adv Energy Mater 6:1501459–1501467. https://doi.org/10.1002/aenm.201501459

    CAS  Article  Google Scholar 

  15. 15

    Shi L, Zhou W, Li Z, Koul S, Kushima A, Yang Y (2018) ACS Nano 12:6335–6342. https://doi.org/10.1021/acsnano.8b03940

    CAS  Article  Google Scholar 

  16. 16

    Chen W, Wang T, Xue J, Li S, Wang Z, Sun S (2017) Small 13:1602420–1602428. https://doi.org/10.1002/smll.201602420

    CAS  Article  Google Scholar 

  17. 17

    Jiang B, Han C, Li B, He Y, Lin Z (2016) ACS Nano 10:2728–2735. https://doi.org/10.1021/acsnano.5b07806

    CAS  Article  Google Scholar 

  18. 18

    Wang K, Chen J, Zhou W et al (2008) Adv Mater 20:3248–3253. https://doi.org/10.1002/adma.200800145

    CAS  Article  Google Scholar 

  19. 19

    Patnaik S, Das KK, Mohanty A, Parida K (2018) Catal Today 315:52–66. https://doi.org/10.1016/j.cattod.2018.04.008

    CAS  Article  Google Scholar 

  20. 20

    Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) Adv Funct Mater 20:2165–2174. https://doi.org/10.1002/adfm.200902390

    CAS  Article  Google Scholar 

  21. 21

    Yang T, Xue J, Tan H et al (2018) J Mater Chem A 6:1210–1218. https://doi.org/10.1039/c7ta07798j

    CAS  Article  Google Scholar 

  22. 22

    Hou L, Hua H, Lian L, Cao H, Zhu S, Yuan C (2015) Chem Eur J 21:13012–13019. https://doi.org/10.1002/chem.201501876

    CAS  Article  Google Scholar 

  23. 23

    Guo X, Zhu H, Si M et al (2014) J Phys Chem C 118:30145–30152. https://doi.org/10.1021/jp507991e

    CAS  Article  Google Scholar 

  24. 24

    Shen L, Yu L, Yu XY, Zhang X, Lou XW (2015) Angew Chem Int Ed 54:1868–1872. https://doi.org/10.1002/anie.201409776

    CAS  Article  Google Scholar 

  25. 25

    McDonald KJ, Choi KS (2011) Chem Mater 23:4863–4869. https://doi.org/10.1021/cm202399g

    CAS  Article  Google Scholar 

  26. 26

    Zheng XL, Dinh CT, de Arquer FP et al (2016) Small 12:3181–3188. https://doi.org/10.1002/smll.201600534

    CAS  Article  Google Scholar 

  27. 27

    Zhou Y, Zhang L, Lin L et al (2017) Nano Lett 17:8012–8017. https://doi.org/10.1021/acs.nanolett.7b04626

    CAS  Article  Google Scholar 

  28. 28

    Wei J, Yin Z, Chen SC, Cai D, Zheng Q (2016) RSC Adv 6:39137–39143. https://doi.org/10.1039/c6ra01204c

    CAS  Article  Google Scholar 

  29. 29

    Shao M, Ning F, Wei M, Evans DG, Duan X (2014) Adv Funct Mater 24:580–586. https://doi.org/10.1002/adfm.201301889

    CAS  Article  Google Scholar 

  30. 30

    Guo L, Yang Z, Marcus K et al (2018) Energy Environ Sci 11:106–114. https://doi.org/10.1039/c7ee02464a

    CAS  Article  Google Scholar 

  31. 31

    Zeng Y, Yang T, Li C et al (2019) Appl Catal B 245:469–476. https://doi.org/10.1016/j.apcatb.2019.01.011

    CAS  Article  Google Scholar 

  32. 32

    Sahu TK, Shah AK, Gogoi G, Patra AS, Ansari MS, Qureshi M (2018) Chem Commun 54:10483–10486. https://doi.org/10.1039/c8cc04882g

    CAS  Article  Google Scholar 

  33. 33

    Li X, Li T, Ma Y et al (2018) Adv Energy Mater 8:1801357–1801365. https://doi.org/10.1002/aenm.201801357

    CAS  Article  Google Scholar 

  34. 34

    Li J, Meng Q, Zhang Y et al (2019) Nat Commun 10:93–101. https://doi.org/10.1038/s41467-018-07831-5

    CAS  Article  Google Scholar 

  35. 35

    Guo Y, Zhang N, Wang X et al (2017) J Mater Chem A 5:7571–7577. https://doi.org/10.1039/c6ta11134c

    CAS  Article  Google Scholar 

  36. 36

    Zhou X, Licklederer M, Schmuki P (2016) Electrochem Commun 73:33–37. https://doi.org/10.1016/j.elecom.2016.10.008

    CAS  Article  Google Scholar 

  37. 37

    Ahn HJ, Yoon KY, Kwak MJ, Jang JH (2016) Angew Chem Int Ed 55:9922–9926. https://doi.org/10.1002/anie.201603666

    CAS  Article  Google Scholar 

  38. 38

    Yu F, Li F, Yao T et al (2017) ACS Catal 7:1868–1874. https://doi.org/10.1021/acscatal.6b03483

    CAS  Article  Google Scholar 

  39. 39

    Liu G, Ye S, Yan P et al (2016) Energy Environ Sci 9:1327–1334. https://doi.org/10.1039/c5ee03802b

    CAS  Article  Google Scholar 

  40. 40

    Gao Y, Hamann TW (2017) Chem Commun 53:1285–1288. https://doi.org/10.1039/c6cc09029j

    CAS  Article  Google Scholar 

  41. 41

    Peter LM, Wijayantha KG, Tahir AA (2012) Faraday Discuss 155:309–322. https://doi.org/10.1039/c1fd00079a

    CAS  Article  Google Scholar 

  42. 42

    Thorne JE, Jang JW, Liu EY, Wang D (2016) Chem Sci 7:3347–3354. https://doi.org/10.1039/c5sc04519c

    CAS  Article  Google Scholar 

  43. 43

    Zachaus C, Abdi FF, Peter LM, van de Krol R (2017) Chem Sci 8:3712–3719. https://doi.org/10.1039/c7sc00363c

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21771001, 51872002), the Anhui Provincial Natural Science Foundation (No. 1708085ME120), the Program of Anhui Scientific and Technical Leaders Reserve Candidates (2018RH168), the Scholar Program for the Outstanding Innovative Talent of College Discipline (Specialty), doctoral start-up fund and open fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University. Funding was also provided by University Natural Science Research Project of Anhui Province (Grant No. KJ2017A007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shikuo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Pedro Camargo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3,088 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Liu, P., Huang, F. et al. Carrier dynamics in hierarchical ZnFe2O4 nanotube arrays and their roles in boosting photoelectrochemical water oxidation. J Mater Sci (2021). https://doi.org/10.1007/s10853-021-05900-7

Download citation