Multilayered structure control for obtaining electrodeposited nanocrystalline iron–nickel alloy with high strength and ductility

Abstract

This study investigated the effect of a multilayered structure on the strength and ductility of a nanocrystalline iron (Fe)–nickel (Ni) alloy, in which an Fe–46 mass% Ni (non-Invar alloy) layer and an Fe–34 mass% Ni (Invar alloy) layer were alternately electrodeposited. The tensile strength of the multilayered nanocrystalline Fe–Ni alloy increased with decrease in the Invar alloy layer thickness ranging from 3.2 to 11.0 µm, following a Hall–Petch-type relationship. The tensile strength discontinuously decreased when the Invar alloy layer thickness decreased to less than 2.6 µm. By contrast, the elongation of the specimens increased with decrease in the Invar alloy layer thickness ranging from 2.6 to 1.5 µm. A specimen showing a high tensile strength of approximately 2 GPa and a high elongation of 15% was produced by the multilayering control of the Invar alloy layer thickness. The measurements of the chemical composition distribution and phase structure change near the interphase boundary revealed that the Ni content gradient layer was formed between the interphase boundaries and the next electrodeposited layer with a thickness of 2 µm. The strengthening mechanism and ductility improvement in the nanocrystalline Fe–Ni alloy by multilayering are discussed herein from the viewpoint of deformation restraint by the gradient layer in the Invar and non-Invar alloy layers via the interphase boundaries.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1

    Baghbanan M, Erb U, Palumbo G (2006) Towards the application of nanocrystalline metals in MEMS. Phys Stat Sol (a) 203:1259–1264. https://doi.org/10.1002/pssa.200566155

    Article  CAS  Google Scholar 

  2. 2

    Spearing SM (2000) Materials issues in microelectromechanical systems (MEMS). Acta Mater 48:179–196. https://doi.org/10.1016/s1359-6454(99)00294-3

    Article  CAS  Google Scholar 

  3. 3

    Nagoshi T, Chang TFM, Tatsuo S, Sone M (2013) Mechanical properties of nickel fabricated by electroplating with supercritical CO2 emulsion evaluated by micro-compression test using non-tapered micro-sized pillar. Microelectron Eng 110:270–273. https://doi.org/10.1016/j.mee.2013.02.001

    Article  CAS  Google Scholar 

  4. 4

    Becker EW, Ehrfeld W, Hagmann P, Maner A, Munchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron Eng 4:35–56. https://doi.org/10.1016/0167-9317(86)90004-3

    Article  CAS  Google Scholar 

  5. 5

    Gleiter H (1989) Nanocrystalline Materials. Prog Mater Sci 33:223–315. https://doi.org/10.1016/0079-6425(89)90001-7

    Article  CAS  Google Scholar 

  6. 6

    Erb U, El-Sherik AM, Palumbo G, Aust KT (1993) Synthesis, structure and properties of electroplated nanocrystalline materials. Nanostruct Mater 2:383–390. https://doi.org/10.1016/0965-9773(93)90144-z

    Article  CAS  Google Scholar 

  7. 7

    Erb U (1995) Electrodeposited nanocrystals: Synthesis, properties and industrial applications. Nanostruct Mater 6:533–538. https://doi.org/10.1016/0965-9773(95)00114-x

    Article  Google Scholar 

  8. 8

    Ebrahimi F, Bourne GR, Kelly MS, Matthews TE (1999) Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct Mater 11:343–350. https://doi.org/10.1016/s0965-9773(99)00050-1

    Article  CAS  Google Scholar 

  9. 9

    Hanlon T (2003) Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater 49:675–680. https://doi.org/10.1016/s1359-6462(03)00393-2

    Article  CAS  Google Scholar 

  10. 10

    Buchheit TE, Goods SH, Kotula PG, Hlava PF (2006) Electrodeposited 80Ni–20Fe (Permalloy) as a structural material for high aspect ratio microfabrication. Mater Sci Eng A 432:149–157. https://doi.org/10.1016/j.msea.2006.05.149

    Article  CAS  Google Scholar 

  11. 11

    Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Pro Mater Sci 51:427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003

    Article  CAS  Google Scholar 

  12. 12

    Ovid’ko IA, Valiev RZ, Zhu YT, (2018) Review on superior strength and enhanced ductility of metallic nanomaterials. Pro Mater Sci 94:462–540. https://doi.org/10.1016/j.pmatsci.2018.02.002

    Article  CAS  Google Scholar 

  13. 13

    Koch CC (2007) Nanostructured materials: processing, properties and applications, 2nd edn. William Andrew, New York

    Google Scholar 

  14. 14

    Yang M, Pan Y, Yuan F, Zhu Y, Wu X (2016) Back stress strengthening and strain hardening in gradient structure. Mater Res Lett 4:145–151. https://doi.org/10.1080/21663831.2016.1153004

    Article  CAS  Google Scholar 

  15. 15

    Cheng Z, Zhou HF, Lu QH, Gao HJ, Lu L (2018) Extra strengthening and work hardening in gradient nanotwinned metals. Science 362, eaau1925. doi:https://doi.org/10.1126/science.aau1925

  16. 16

    Menezes S, Anderso DP (1990) Wavelength–property correlation in electrodeposited ultrastructured Cu–Ni multilayers. J Electrochem Soc 137:440–444. https://doi.org/10.1149/1.2086459

    Article  CAS  Google Scholar 

  17. 17

    Tench DM, White JT (1991) Tensile properties of nanostructured Ni–Cu multilayered materials prepared by electrodeposition. J Electrochem Soc 138:3757–3758. https://doi.org/10.1149/1.2085495

    Article  CAS  Google Scholar 

  18. 18

    Torabinejad V, Aliofkhazraei M, Rouhaghdam AS, Allahyarzadeh MH (2017) Tribological performance of Ni-Fe-Al2O3 multilayer coatings deposited by pulse electrodeposition. Wear 380–381:115–125. https://doi.org/10.1016/j.wear.2017.03.013

    Article  CAS  Google Scholar 

  19. 19

    Simunovich D, Schlesinger M (1994) Electrochemically Layered Copper-Nickel Nanocomposites with Enhanced Hardness. J Electrochem Soc 141:L10–L11. https://doi.org/10.1149/1.2054717

    Article  CAS  Google Scholar 

  20. 20

    Oberle RR, Cammarata RC (1995) Dependence of hardness on modulation amplitude in electrodeposited Cu-Ni compositionally modulated thin films. Scripta Metall Mater 32:583–588. https://doi.org/10.1016/0956-716x(95)90841-7

    Article  CAS  Google Scholar 

  21. 21

    Anderson PM, Li C (1995) Hall-Petch relations for multilayered materials. Nanostruct Mater 5:349–362. https://doi.org/10.1016/0965-9773(95)00250-i

    Article  CAS  Google Scholar 

  22. 22

    Phillips MA, Clemens BM, Nix WD (2003) Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater 51:3171–3184. https://doi.org/10.1016/s1359-6454(03)00128-9

    Article  CAS  Google Scholar 

  23. 23

    Kaneko Y, Mizuta Y, Nishijima Y, Hashimoto S (2005) Vickers hardness and deformation of Ni/Cu nano–multilayers electrodeposited on copper substrates. J Mater Sci 40:3231–3236. https://doi.org/10.1007/s10853-005-2690-4

    Article  CAS  Google Scholar 

  24. 24

    Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid St M 15:20–28. https://doi.org/10.1016/j.cossms.2010.09.002

    Article  CAS  Google Scholar 

  25. 25

    Brenner A (1963) Electrodeposition of Alloys: Principles and Practices, 1st edn. Academic Press, New York

    Google Scholar 

  26. 26

    Bredael E, Celis JP, Roos JR (1993) NiP electrodeposition on a rotating-disc electrode and in a jet cell: relationship between plating parameters and structural characteristics. Surf Coat Tech 58:63–71. https://doi.org/10.1016/0257-8972(93)90175-n

    Article  CAS  Google Scholar 

  27. 27

    Hagiwara H, Kaneko Y, Uchida M (2020) Fabrication and Enhanced Vickers Hardness of Electrodeposited Co­Cu Alloy Film with High Composition Gradient. Mater Trans 61:801–804. https://doi.org/10.2320/matertrans.MT-M2019334

    Article  CAS  Google Scholar 

  28. 28

    Ebrahimi F, Ahmed Z, Li HQ (2006) Tensile Properties of Electrodeposited Nanocrystalline FCC Metals. Mater and Manuf Process 21:687–693. https://doi.org/10.1080/10426910600611748

    Article  CAS  Google Scholar 

  29. 29

    Palumbo G, Erb U, Aust KT (1990) Triple line disclination effects on the mechanical behaviour of materials. Scripta Metall Mater 24:2347–2350. https://doi.org/10.1016/0956-716x(90)90091-t

    Article  CAS  Google Scholar 

  30. 30

    Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563. https://doi.org/10.1038/35328

    Article  Google Scholar 

  31. 31

    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Deformation–mechanism map for nanocrystalline metals by molecular–dynamics simulation. Nature Mater 3:43–47. https://doi.org/10.1038/nmat1035

    Article  CAS  Google Scholar 

  32. 32

    Chokshi AH, Rosen A, Karch J, Gleiter H (1989) On the validity of the hall–petch relationship in nanocrystalline materials. Scripta Metall 23:1679–1684. https://doi.org/10.1016/0036-9748(89)90342-6

    Article  CAS  Google Scholar 

  33. 33

    Koch CC, Morris DG, Lu K, Inoue A (1999) Ductility of Nanostructured Materials. MRS Bull 24:54–58. https://doi.org/10.1557/s0883769400051551

    Article  CAS  Google Scholar 

  34. 34

    Kobayashi S, Kashikura Y (2003) Grain growth and mechanical properties of electrodeposited nanocrystalline nickel–4.4mass% phosphorus alloy. Mater Sci Eng A 358:76–83. https://doi.org/10.1016/s0921-5093(03)00285-5

    Article  Google Scholar 

  35. 35

    Blum W (1921) The structure and properties of alternately electrodeposited metals. Trans Am Electrochem Soc 40:307–320

    Google Scholar 

  36. 36

    Haseeb A, Blanpain B, Wouters G, Celis JP, Roos JR (1993) Electrochemical deposition: a method for the production of artificially structured materials. Mater Sci Eng A 168:137–140. https://doi.org/10.1016/0921-5093(93)90716-r

    Article  Google Scholar 

  37. 37

    Daly M, McCrea JL, Bouwhuis BA, Singh CV, Hibbard GD (2015) Deformation behavior of a NiCo multilayer with a modulated grain size distribution. Mater Sci Eng A 641:305–314. https://doi.org/10.1016/j.msea.2015.06.049

    Article  CAS  Google Scholar 

  38. 38

    Daly M, Haldar S, Rajendran VK, McCrea J, Hibbard GD, Singh CV (2019) Size effects in strengthening of NiCo multilayers with modulated microstructures. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2019.138581

    Article  Google Scholar 

  39. 39

    Egberts P, Brodersen P, Hibbard GD (2006) Mesoscale structure in electrodeposited nanocrystalline Ni–Fe alloys. Mater Sci Eng A 441:336–341. https://doi.org/10.1016/j.msea.2006.08.023

    Article  CAS  Google Scholar 

  40. 40

    Koehler JS (1970) Attempt to Design a Strong Solid. Phys Rev B 2:547–551. https://doi.org/10.1103/physrevb.2.547

    Article  Google Scholar 

  41. 41

    Kreidler ER, Anderson PM (1996) Orowan-Based Deformation Model for Layered Metallic Materials. Mat Res Soc Symp Proc 434:159–170. https://doi.org/10.1557/proc-434-159

    Article  CAS  Google Scholar 

  42. 42

    Hoagland RG, Mitchell TE, Hirth JP, Kung H (2002) On the strengthening effects of interfaces in multilayer fee metallic composites. Philos Mag A 82:643–664. https://doi.org/10.1080/01418610208243194

    Article  CAS  Google Scholar 

  43. 43

    Hoagland RG, Kurtz RJ, Henager CH (2004) Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater 50:775–779. https://doi.org/10.1016/j.scriptamat.2003.11.059

    Article  CAS  Google Scholar 

  44. 44

    Torabinejad V, Aliofkhazraei M, Sabour Rouhaghdam A, Allahyarzadeh MH (2016) Functionally Graded Coating of Ni-Fe Fabricated by Pulse Electrodeposition. J Mater Eng Perform 25:5494–5501. https://doi.org/10.1007/s11665-016-2376-x

    Article  CAS  Google Scholar 

  45. 45

    Torabinejad V, Rouhaghdam AS, Aliofkhazraei M, Allahyarzadeh MH (2016) Electrodeposition of Ni–Fe and Ni–Fe–(nano Al2O3) multilayer coatings. J Alloy Compd 657:526–536. https://doi.org/10.1016/j.jallcom.2015.10.154

    Article  CAS  Google Scholar 

  46. 46

    Torabinejad V, Aliofkhazraei M, Rouhaghdam AS, Allahyarzadeh MH, Kasama T, Alimadadi H (2017) Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating. Mater Sci Eng A 700:448–456. https://doi.org/10.1016/j.msea.2017.06.009

    Article  CAS  Google Scholar 

  47. 47

    Zhang SZ, Kobayashi S (2020) Multilayering process of electrodeposited nanocrystalline iron–nickel alloys for further strengthening. J Mater Sci 55:5627–5638. https://doi.org/10.1007/s10853-020-04378-z

    Article  CAS  Google Scholar 

  48. 48

    Grimmett DL, Schwartz M, Nobe K, (1993) A comparison of DC and Pulsed Fe-Ni alloy deposits. J Electrochem Soc 140:973–978. https://doi.org/10.1149/1.2056238

    Article  CAS  Google Scholar 

  49. 49

    Cullity BD (1978) Elements of X-Ray Diffraction, 2nd edn. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  50. 50

    Kurmanaeva L, Bahmanpour H, Holland T et al (2014) Room temperature mechanical behaviour of a Ni-Fe multilayered material with modulated grain size distribution. Philosophical Mag 94:3549–3559. https://doi.org/10.1080/14786435.2014.964346

    Article  CAS  Google Scholar 

  51. 51

    Kurmanaeva L, McCrea J, Jian J, Fiebig J, Wang H, Mukherjee AK, Lavernia EJ (2016) Influence of layer thickness on mechanical properties of multilayered Ni–Fe samples processed by electrodeposition. Mater Des 90:389–395. https://doi.org/10.1016/j.matdes.2015.10.137

    Article  CAS  Google Scholar 

  52. 52

    Torabinejad V, Aliofkhazraei M, Sabour Rouhaghdam A, Allahyarzadeh MH (2016) Tribological Behavior of Electrodeposited Ni-Fe Multilayer Coating. Tribol Int 60:923–931. https://doi.org/10.1080/10402004.2016.1230687

    Article  CAS  Google Scholar 

  53. 53

    Torabinejad V, Aliofkhazraei M, Sabour Rouhaghdam A, Allahyarzadeh MH (2016) Ni–Fe–Mn–(nano)Al2O3 Coating with Modulated Composition and Grain Size. T Indian I Metals 70:1199–1207. https://doi.org/10.1007/s12666-016-0913-9

    Article  CAS  Google Scholar 

  54. 54

    Torabinejad V, Aliofkhazraei M, Rouhaghdam AS, Allahyarzadeh MH (2017) Tribological properties of Ni-Fe-Co multilayer coatings fabricated by pulse electrodeposition. Tribol Int 106:34–40. https://doi.org/10.1016/j.triboint.2016.10.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Y. Ando (Ashikaga University, Japan) for providing the XRD measurement facilities and Professor S. Tsurekawa (Kumamoto University, Japan) for the provision of FEG-SEM/EDS measurement facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Megumi Kawasaki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Kobayashi, S. Multilayered structure control for obtaining electrodeposited nanocrystalline iron–nickel alloy with high strength and ductility. J Mater Sci 56, 9484–9498 (2021). https://doi.org/10.1007/s10853-021-05898-y

Download citation