Ultrahigh capture of radioiodine with zinc oxide-decorated, nitrogen-doped hierarchical nanoporous carbon derived from sonicated ZIF-8-precursor


The importance of iodine to industry and humans cannot be overemphasized. It plays a crucial role in human metabolic processes. It is widely used for various applications in medicine, material sciences, environmental, and engineering sciences. During the deployment of nuclear technology, there is release of radioiodine in the environment through processes such as reprocessing of nuclear fuel and accidents. Thus, to safeguard the applications of iodine and prevent the leakage of radioiodine into the environment, the capturing and storage of radioiodine are very critical. In our work, ultrahigh radioiodine adsorption capacities of 454 wt% and 1508 mg g−1 were achieved for iodine vapor and iodine in cyclohexane solution, respectively; using Zinc oxide and nitrogen-doped hierarchical porous carbon (ZnO@NCs), which has a surface area of 1983 m2g−1 synthesized by ultra-sonication of ZIF-8 precursor. These ultrahigh adsorption capacities could be the result of large pore volume of the pores and area of the surface; as well as the electron donor groups such as OH and O2−, which generated charge transfer between iodine and the adsorbent. The adsorption fits the Freundlich and pseudo-second-order models. These large surface area, ultrahigh adsorption capacity, easy preparation, and good regeneration are indicative of ZnO@NCs as a promising radioiodine adsorbent.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1

    Banerjee D, Cairns AJ, Liu J et al (2015) Potential of metal-organic frameworks for separation of xenon and krypton. Acc Chem Res 48:211–219. https://doi.org/10.1021/ar5003126

    CAS  Article  Google Scholar 

  2. 2

    Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017) Novel Metal-Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment. ACS Appl Mater Interfaces 9:36026–36037. https://doi.org/10.1021/acsami.7b10768

    CAS  Article  Google Scholar 

  3. 3

    Abney CW, Taylor-Pashow KML, Russell SR et al (2014) Topotactic transformations of metal-organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration. Chem Mater 26:5231–5243. https://doi.org/10.1021/cm501894h

    CAS  Article  Google Scholar 

  4. 4

    Kaltsoyannis N, Liddle ST (2016) Catalyst: Nuclear Power in the 21st Century. Chem 1:659–662. https://doi.org/10.1016/j.chempr.2016.10.003

    CAS  Article  Google Scholar 

  5. 5

    IAEA (2019) IAEA Publications Catalogue 2012 – 2013

  6. 6

    Miensah ED, Khan MM, Chen JY et al (2019) Zeolitic imidazolate frameworks and their derived materials for sequestration of radionuclides in the environment: A review. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2019.1686946

    Article  Google Scholar 

  7. 7

    Kumamoto Y, Aoyama M, Hamajima Y et al (2015) Impact of Fukushima-derived radiocesium in the western North Pacific Ocean about ten months after the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 140:114–122. https://doi.org/10.1016/j.jenvrad.2014.11.010

    CAS  Article  Google Scholar 

  8. 8

    Zhang T, Yue X, Gao L et al (2017) Hierarchically porous bismuth oxide/layered double hydroxide composites: Preparation, characterization and iodine adsorption. J Clean Prod 144:220–227. https://doi.org/10.1016/j.jclepro.2017.01.030

    CAS  Article  Google Scholar 

  9. 9

    Liu S, Kang S, Wang H et al (2016) Nanosheets-built flowerlike micro/nanostructured Bi 2 O 2.33 and its highly efficient iodine removal performances. Chem Eng J 289:219–230. https://doi.org/10.1016/j.cej.2015.12.101

    CAS  Article  Google Scholar 

  10. 10

    Huve J, Ryzhikov A, Nouali H et al (2018) Porous sorbents for the capture of radioactive iodine compounds: A review. RSC Adv 8:29248–29273. https://doi.org/10.1039/c8ra04775h

    CAS  Article  Google Scholar 

  11. 11

    Liao Y, Weber J, M. Mills B, et al (2016) Highly Efficient and Reversible Iodine Capture in Hexaphenylbenzene-Based Conjugated Microporous Polymers. Macromolecules 49:6322–6333. https://doi.org/10.1021/acs.macromol.6b00901

    CAS  Article  Google Scholar 

  12. 12

    Cardis E, Kesminiene A, Ivanov V et al (2005) Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 97:724–732. https://doi.org/10.1093/jnci/dji129

    Article  Google Scholar 

  13. 13

    Li J, Wang X, Zhao G et al (2018) Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356. https://doi.org/10.1039/c7cs00543a

    CAS  Article  Google Scholar 

  14. 14

    Han T-T, Wang L-N, Potgieter JH (2020) ZIF-11 derived nanoporous carbons with ultrahigh uptakes for capture and reversible storage of volatile iodine. J Solid State Chem 282:121108. https://doi.org/10.1016/j.jssc.2019.121108

    CAS  Article  Google Scholar 

  15. 15

    Nandanwar SU, Coldsnow K, Utgikar V et al (2016) Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment – A review. Chem Eng J 306:369–381. https://doi.org/10.1016/j.cej.2016.07.073

    CAS  Article  Google Scholar 

  16. 16

    Yu F, Li D-D, Cheng L et al (2015) Porous Supramolecular Networks Constructed of One-Dimensional Metal-Organic Chains: Carbon Dioxide and Iodine Capture. Inorg Chem 54:1655–1660. https://doi.org/10.1021/ic502650z

    CAS  Article  Google Scholar 

  17. 17

    Riley BJ, Pierce DA, Chun J et al (2014) Polyacrylonitrile-chalcogel hybrid sorbents for radioiodine capture. Environ Sci Technol 48:5832–5839. https://doi.org/10.1021/es405807w

    CAS  Article  Google Scholar 

  18. 18

    Adams GM, Weller AS (2018) POP-type ligands: Variable coordination and hemilabile behaviour. Coord Chem Rev 355:150–172. https://doi.org/10.1016/j.ccr.2017.08.004

    CAS  Article  Google Scholar 

  19. 19

    Huang N, Zhai L, Xu H, Jiang D (2017) Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. J Am Chem Soc 139:2428–2434. https://doi.org/10.1021/jacs.6b12328

    CAS  Article  Google Scholar 

  20. 20

    Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107. https://doi.org/10.1016/j.ccr.2017.12.010

    CAS  Article  Google Scholar 

  21. 21

    Shen K, Zhang L, Chen X et al (2018) Ordered macro-microporous metal-organic framework single crystals (80- ). Sci 359:206–210. https://doi.org/10.1126/science.aao3403

    CAS  Article  Google Scholar 

  22. 22

    Liu S, Wang N, Zhang Y et al (2015) Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O–Ag/TiO2 composites under visible light irradiation. J Hazard Mater 284:171–181. https://doi.org/10.1016/j.jhazmat.2014.10.054

    CAS  Article  Google Scholar 

  23. 23

    Subrahmanyam KS, Malliakas CD, Sarma D et al (2015) Ion-Exchangeable Molybdenum Sulfide Porous Chalcogel: Gas Adsorption and Capture of Iodine and Mercury. J Am Chem Soc 137:13943–13948. https://doi.org/10.1021/jacs.5b09110

    CAS  Article  Google Scholar 

  24. 24

    Sun H, La P, Zhu Z et al (2015) Capture and reversible storage of volatile iodine by porous carbon with high capacity. J Mater Sci 50:7326–7332. https://doi.org/10.1007/s10853-015-9289-1

    CAS  Article  Google Scholar 

  25. 25

    Luo Y-H, Yu X-Y, Yang J-J, Zhang H (2014) An eight-connected porous metal–organic framework based on hetero pentanuclear clusters. Cryst Eng Comm 16:47–50. https://doi.org/10.1039/C3CE41785A

    CAS  Article  Google Scholar 

  26. 26

    Shafaei-Fallah M, He J, Rothenberger A, Kanatzidis MG (2011) Ion-Exchangeable Cobalt Polysulfide Chalcogel. J Am Chem Soc 133:1200–1202. https://doi.org/10.1021/ja1089028

    CAS  Article  Google Scholar 

  27. 27

    Pham TCT, Docao S, Hwang IC et al (2016) Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energy Environ Sci 9:1050–1062. https://doi.org/10.1039/C5EE02843D

    CAS  Article  Google Scholar 

  28. 28

    Sun H, Li A, Zhu Z et al (2013) Superhydrophobic Activated Carbon-Coated Sponges for Separation and Absorption. Chemsuschem 6:1057–1062. https://doi.org/10.1002/cssc.201200979

    CAS  Article  Google Scholar 

  29. 29

    Qian D, Lei C, Wang E-M et al (2014) A Method for Creating Microporous Carbon Materials with Excellent CO 2 -Adsorption Capacity and Selectivity. Chemsuschem 7:291–298. https://doi.org/10.1002/cssc.201300585

    CAS  Article  Google Scholar 

  30. 30

    Yang SJ, Kim T, Im JH et al (2012) MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity. Chem Mater 24:464–470. https://doi.org/10.1021/cm202554j

    CAS  Article  Google Scholar 

  31. 31

    Wang C, Kim J, Tang J et al (2020) Large-Scale Synthesis of MOF-Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angew Chemie - Int Ed 59:2066–2070. https://doi.org/10.1002/anie.201913719

    CAS  Article  Google Scholar 

  32. 32

    Tang J, Salunkhe RR, Zhang H et al (2016) Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci Rep 6:3–4. https://doi.org/10.1038/srep30295

    CAS  Article  Google Scholar 

  33. 33

    Kaneti YV, Zhang J, He YB et al (2017) Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J Mater Chem A 5:15356–15366. https://doi.org/10.1039/c7ta03939e

    CAS  Article  Google Scholar 

  34. 34

    Wang C, Kim J, Tang J et al (2020) New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. Chem 6:19–40. https://doi.org/10.1016/j.chempr.2019.09.005

    CAS  Article  Google Scholar 

  35. 35

    Azhar A, Li Y, Cai Z et al (2019) Nanoarchitectonics: A new materials horizon for prussian blue and its analogues. Bull Chem Soc Jpn 92:875–904. https://doi.org/10.1246/bcsj.20180368

    CAS  Article  Google Scholar 

  36. 36

    Almasoudi A, Mokaya R (2012) Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem 22:146–152. https://doi.org/10.1039/C1JM13314D

    CAS  Article  Google Scholar 

  37. 37

    Lu W, Sculley JP, Yuan D et al (2012) Polyamine-Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas. Angew Chemie Int Ed 51:7480–7484. https://doi.org/10.1002/anie.201202176

    CAS  Article  Google Scholar 

  38. 38

    Zhang Y, Nayak T, Hong H, Cai W (2013) Biomedical Applications of Zinc Oxide Nanomaterials. Curr Mol Med 13:1633–1645. https://doi.org/10.2174/1566524013666131111130058

    CAS  Article  Google Scholar 

  39. 39

    Amali AJ, Sun JK, Xu Q (2014) From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem Commun 50:1519–1522. https://doi.org/10.1039/c3cc48112c

    CAS  Article  Google Scholar 

  40. 40

    Ghosh A, Ghosh S, Seshadhri GM, Ramaprabhu S (2019) Green synthesis of nitrogen-doped self-assembled porous carbon-metal oxide composite towards energy and environmental applications. Sci Rep 9:5187. https://doi.org/10.1038/s41598-019-41700-5

    CAS  Article  Google Scholar 

  41. 41

    Sotomayor FJ, Cychosz KA, Thommes M (2018) Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc Mater Surf Res 3:34–50

    Google Scholar 

  42. 42

    Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    CAS  Article  Google Scholar 

  43. 43

    Giannakoudakis DA, Bandosz TJ (2018) Detoxification of Chemical Warfare Agents. Springer International Publishing, Cham

    Book  Google Scholar 

  44. 44

    Wang J, Liu C, Xiang L (2013) Influence of Sodium Dodecyl Sulfonate on the Formation of ZnO Nanorods from ε -Zn(OH) 2. J Nanomater 2013:1–6. https://doi.org/10.1155/2013/621378

    CAS  Article  Google Scholar 

  45. 45

    Hu L, Xu Z, He P et al (2020) Zinc and Nitrogen-Doped Carbon In-Situ Wrapped ZnO Nanoparticles as a High-Activity Catalyst for Acetylene Acetoxylation. Catal Letters 150:1155–1162. https://doi.org/10.1007/s10562-019-02971-9

    CAS  Article  Google Scholar 

  46. 46

    Sun H, La P, Yang R et al (2017) Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO2 and volatile iodine. J Hazard Mater 321:210–217. https://doi.org/10.1016/j.jhazmat.2016.09.015

    CAS  Article  Google Scholar 

  47. 47

    Xiao Z, Xiao G, Shi M, Zhu Y (2018) Homogeneously Dispersed Co 9 S 8 Anchored on Nitrogen and Sulfur Co-Doped Carbon Derived from Soybean as Bifunctional Oxygen Electrocatalysts and Supercapacitors. ACS Appl Mater Interfaces 10:16436–16448. https://doi.org/10.1021/acsami.8b01592

    CAS  Article  Google Scholar 

  48. 48

    Sun CQ (2014) Electrons: Entrapment and Polarization. Springer Series in Chemical Physics. Springer, Singapore, pp 313–344

    Google Scholar 

  49. 49

    Dinesh VP, Biji P, Ashok A et al (2014) Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core-shell nanorods. RSC Adv 4:58930–58940. https://doi.org/10.1039/c4ra09405k

    CAS  Article  Google Scholar 

  50. 50

    Thakur AK, Choudhary RB, Majumder M, Gupta G (2017) In-Situ Integration of Waste Coconut Shell Derived Activated Carbon/Polypyrrole/Rare Earth Metal Oxide (Eu2O3): A Novel Step Towards Ultrahigh Volumetric Capacitance. Electrochim Acta 251:532–545. https://doi.org/10.1016/j.electacta.2017.08.159

    CAS  Article  Google Scholar 

  51. 51

    Kale G, Arbuj S, Kawade U et al (2018) Synthesis of porous nitrogen doped zinc oxide nanostructures using a novel paper mediated template method and their photocatalytic study for dye degradation under natural sunlight. Mater Chem Front 2:163–170. https://doi.org/10.1039/C7QM00490G

    CAS  Article  Google Scholar 

  52. 52

    Kajan I, Tietze S, Ekberg C (2016) Interaction of ruthenium tetroxide with iodine-covered surfaces of materials in nuclear reactor containment building. J Nucl Sci Technol 53:1889–1898. https://doi.org/10.1080/00223131.2016.1174627

    CAS  Article  Google Scholar 

  53. 53

    Dillard JG, Moers H, Klewe-Nebenius H et al (1984) An x-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide. J Phys Chem 88:4104–4111. https://doi.org/10.1021/j150662a050

    CAS  Article  Google Scholar 

  54. 54

    Flockhart B (1974) Electron-transfer at alumina surfaces 4. Reduction of iodine J Catal 32:20–24. https://doi.org/10.1016/0021-9517(74)90154-7

    CAS  Article  Google Scholar 

  55. 55

    Gliński M, Ulkowska U (2011) Reaction of iodine with metal oxides. Can J Chem 89:1370–1374. https://doi.org/10.1139/v11-117

    Article  Google Scholar 

  56. 56

    Li H, Sun Z, Zhang L et al (2016) A cost-effective porous carbon derived from pomelo peel for the removal of methyl orange from aqueous solution. Colloids Surfaces A Physicochem Eng Asp 489:191–199. https://doi.org/10.1016/j.colsurfa.2015.10.041

    CAS  Article  Google Scholar 

  57. 57

    Wang F, Zhu L, Pan Y et al (2019) From ZIF nanoparticles to hierarchically porous carbon: Toward very high surface area and high-performance supercapacitor electrode materials. Inorg Chem Front 6:32–39. https://doi.org/10.1039/c8qi00832a

    CAS  Article  Google Scholar 

  58. 58

    Gordon T, Grinblat J, Margel S (2013) Preparation of “Cauliflower-Like” ZnO micron-sized particles. Mater (Basel) 6:5234–5246. https://doi.org/10.3390/ma6115234

    CAS  Article  Google Scholar 

  59. 59

    Guo B, Wu S, Su Q et al (2018) New acetal-linked porous organic polymer as an efficient absorbent for CO2 and iodine uptake. Mater Lett 229:240–243. https://doi.org/10.1016/j.matlet.2018.07.008

    CAS  Article  Google Scholar 

  60. 60

    Yao C, Li G, Wang J et al (2018) Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO2 capture. Sci Rep 8:2–10. https://doi.org/10.1038/s41598-018-20003-1

    CAS  Article  Google Scholar 

  61. 61

    Wang P, Xu Q, Li Z et al (2018) Exceptional Iodine Capture in 2D Covalent Organic Frameworks. Adv Mater 30:1–7. https://doi.org/10.1002/adma.201801991

    CAS  Article  Google Scholar 

  62. 62

    Li G, Huang Y, Lin J et al (2020) Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers. Chem Eng J 382:122833. https://doi.org/10.1016/j.cej.2019.122833

    CAS  Article  Google Scholar 

  63. 63

    Geng T, Chen G, Xia H et al (2018) Poly{tris[4-(2-thienyl)phenyl]amine} and poly[tris(4-carbazoyl- 9-yl phenyl)amine] conjugated microporous polymers as absorbents for highly efficient iodine adsorption. J Solid State Chem 265:85–91. https://doi.org/10.1016/j.jssc.2018.05.030

    CAS  Article  Google Scholar 

  64. 64

    Hosseini S, Khan MA, Malekbala MR et al (2011) Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: Adsorption and desorption studies. Chem Eng J 171:1124–1131. https://doi.org/10.1016/j.cej.2011.05.010

    CAS  Article  Google Scholar 

  65. 65

    Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour Technol 98:2897–2904. https://doi.org/10.1016/j.biortech.2006.09.045

    CAS  Article  Google Scholar 

Download references


The work was partially funded by the National Natural Science Foundation of China (No. 51908240 and 11205089), the Natural Science Foundation of Jiangsu Province (No. BK20181064), and Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (No. KFK1504).

Author information



Corresponding author

Correspondence to Yi Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Yaroslava Yingling.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 508 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miensah, E.D., Chen, J., Gu, A. et al. Ultrahigh capture of radioiodine with zinc oxide-decorated, nitrogen-doped hierarchical nanoporous carbon derived from sonicated ZIF-8-precursor. J Mater Sci 56, 9106–9121 (2021). https://doi.org/10.1007/s10853-021-05887-1

Download citation