Superior capacitive energy storage capability in polymer composites induced by polydopamine-coated paraelectric platelets


Dielectric nanocomposites with excellent energy storage capabilities have great potential applications in film energy storage capacitors. However, limited energy storage density (Ue) and poor efficiency (η) of nanocomposites based on the incorporation of the high dielectric constant (εr) fillers restrict their practical energy storage application due to low breakdown strengths (Eb) and electric displacement difference (Dmax-Drem) value. Herein, paraelectric SrTiO3 (ST) plates have been successfully synthesized through three-step molten salt process and modified by polydopamine (PDA) nanolayer. The moderate dielectric constant ST has the advantage for increasing the breakdown strength of poly(vinylidene fluoride) (PVDF)-based composites owing to the mitigation of electric field distortion. The ST@PDA platelets bring the highest Dmax-Drem (8.65 μC/cm2) together with enhanced Eb (350 MV/m) to the composites on account of the strong microscopic barrier layers. Consequently, the composite film filled with optimized ST@PDA platelets content (2.5 vol%) endows the maximum Ue of 12.45 J cm−3 at 350 MV/m, which presents the best result when compared to the neat PVDF and dielectric nanocomposites added with diverse ST morphologies including nanoparticles, nanowires, and nanofibers reported previously. This work offers an efficiency strategy utilizing high insulating paraelectric fillers with a plate structure to maximize the improvement in capacitive energy storage performance for dielectric composites.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. 1

    Su YT, Zhou MP, Sui G, Lan JL, Zhang HT, Yang XP (2020) Polyvinyl butyral composites containing halloysite nanotubes/reduced graphene oxide with high dielectric constant and low loss. Chem Eng J 394:124910

    CAS  Article  Google Scholar 

  2. 2

    Zhao Q, Yang L, Chen K, Ma Y, Ji H, Shen M, Huang H, He H, Qiu J (2019) Ultra-high discharged energy density in PVDF based composites through inducing MnO2 particles with optimized geometric structure. Nano Energy 65:104007

    Article  Google Scholar 

  3. 3

    Chen J, Li Y (2020) WangYF, Dong JF, Xu XW, Yuan QB, Niu YJ, Wang Q, Wang H, Significantly improved breakdown strength and energy density of tri-layered polymer nanocomposites with optimized graphene oxide. Compos Sci Technol 186:107912

    CAS  Article  Google Scholar 

  4. 4

    Feng YF, Wu Q, Deng QH, Peng C, Hu JB, Xu ZC (2019) High dielectric and breakdown properties obtained in a PVDF based nanocomposite with sandwich structure at high temperature via all-2D design. J Mater Chem C 7:6744–6751

    CAS  Article  Google Scholar 

  5. 5

    Huang X, Zhang X, Ren GK, Jiang JJ, Dan ZK, Zhang QH, Zhang X, Nan CW, Shen Y (2019) Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots. J Mater Chem A 7:15198–15206

    CAS  Article  Google Scholar 

  6. 6

    Shen Y, Shen DS, Zhang X, Jiang JY, Dan ZK, Song Y, Lin YH, Li M, Nan CW (2016) High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure. J Mater Chem A 4:8359–8365

    CAS  Article  Google Scholar 

  7. 7

    Dai ZH, Xie JL, Fan X, Ding XD, Liu WG, Zhou S, Ren XB (2020) Enhanced energy storage properties and stability of Sr(Sc0.5Nb0.5)O3 modified 0.65BaTiO3–0.35Bi0.5Na0.5TiO.3 ceramics. Chem Eng J 397:125520

    CAS  Article  Google Scholar 

  8. 8

    Dai ZH, Xie JL, Liu WG, Wang X, Zhang L, Zhou ZJ, Li JL, Ren XB (2020) Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Appl Mater Interfaces 12:30289–30296

    CAS  Article  Google Scholar 

  9. 9

    Ma YP, Luo H, Zhou XF, Guo R, Dang F, Zhou KC, Zhang D (2020) Suppressed polarization by epitaxial growth of SrTiO3 on BaTiO3 nanoparticles for high discharged energy density and efficiency nanocomposites. Nanoscale 12:8230–8236

    CAS  Article  Google Scholar 

  10. 10

    Zhang YY, Liu XR, Yu JY, Fan MZ, Ji XM, Sun BZ, Hu PH (2019) Optimizing the dielectric energy storage performance in P(VDF-HFP) nanocomposite by modulating the diameter of PZT nanofibers prepared via electrospinning. Compos Sci Technol 184:107838

    CAS  Article  Google Scholar 

  11. 11

    Luo SB, Yu JY, Yu SH, Sun R, Cao LQ, Liao WH, Wong CP (2018) Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv Energy Mater 9:1803204

  12. 12

    Luo SB, Shen YB, Yu SH, Wan YJ, Liao WH, Sun R, Wong CP (2017) Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ Sci 10:137–144

    CAS  Article  Google Scholar 

  13. 13

    Chen J, Wang YF, Dong JF, Niu YJ, Chen WX, Wang H (2020) Enhanced dielectric performance in flexible MWCNTs/poly(vinylidenefluoride-co-hexafluoropropene)-based nanocomposites by the design of tri-layered structure. J Mater Chem C 8:5950–5957

    CAS  Article  Google Scholar 

  14. 14

    Tang HX, Lin YR, Sodano HA (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2:469–476

    CAS  Article  Google Scholar 

  15. 15

    Xie B, Zhang HB, Zhang Q, Zang JD, Yang C, Wang QP, Li MY, Jiang SL (2017) Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. J Mater Chem A 5:6070–6078

    CAS  Article  Google Scholar 

  16. 16

    Yao LM, Pan ZB, Zhai JW, Chen HHD (2017) Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors. Nanoscale 9:4255–4264

    CAS  Article  Google Scholar 

  17. 17

    Liao SD, Shen ZH, Pan H, Zhang X, Shen Y, Lin YH, Nan CW (2017) A surface-modified TiO2 nanorod array/P(VDF–HFP) dielectric capacitor with ultra high energy density and efficiency. J Mater Chem C 5:12777–12784

    CAS  Article  Google Scholar 

  18. 18

    Pan ZB, Yao LM, Liu JJ, Liu XY, Pi FP, Chen JW, Shen B, Zhai JW (2019) Superior discharge energy density and efficiency in polymer nanocomposites induced by linear dielectric core–shell nanofibers. J Mater Chem C 7:405–413

    CAS  Article  Google Scholar 

  19. 19

    Wu L, Wu K, Liu D, Huang R, Huo J, Chen F, Fu Q (2018) Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets. J Mater Chem A 6:7573–7584

    CAS  Article  Google Scholar 

  20. 20

    Li H, Ai D, Ren LL, Yao B, Han ZB, Shen ZH, Wang JJ, Chen LQ, Wang Q (2019) Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv Mater 31:1900875

  21. 21

    Liu S, Zhai JJ (2015) Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J Mater Chem A 3:1511–1517

    CAS  Article  Google Scholar 

  22. 22

    Tang HX, Sodano HA (2013) High energy density nanocomposite capacitors using non-ferroelectric nanowires. Appl Phys Lett 102:063901

    Article  Google Scholar 

  23. 23

    Zou K, Yu D, Yu Y, Zhang Y, Zhang Q, Lu Y, Huang H, Zhang X, He Y (2019) Flexible dielectric nanocomposites with simultaneously large discharge energy density and high energy efficiency utilizing (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric nanoparticles as fillers. J Mater Chem A 7:13473–13482

    CAS  Article  Google Scholar 

  24. 24

    Wang L, Gao F, Xu J, Zhang KN, Kong J, Reece M, Yan HX (2018) Enhanced dielectric tunability and energy storage properties of platelike Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites through texture arrangement. Compos Sci Technol 158:112–120

    CAS  Article  Google Scholar 

  25. 25

    Xu G, Huang X, Zhang Y, Deng S, Wei X, Shen G, Han G (2013) Self-assembly and formation mechanism of single-crystal SrTiO3 nanosheets via solvothermal route with ethylene glycol as reaction medium. Cryst EngComm 15:7206–7211

    CAS  Article  Google Scholar 

  26. 26

    Chen GL, Zhang P, Pan LL, Qi L, Yu FC, Gao CX (2017) Flexible nonvolatile resistive memory devices based on SrTiO3 nanosheets and polyvinylpyrrolidone composites. J Mater Chem C 5:9799–9805

    CAS  Article  Google Scholar 

  27. 27

    Li WJ, Meng QJ, Zheng YS, Zhang ZC, Xia WM, Xu Z (2010) Electric energy storage properties of poly(vinylidene fluoride). Appl Phys Lett 96:192905

    Article  Google Scholar 

  28. 28

    Wang YF, Chen J, Li Y, Niu YJ, Wang Q, Wang H (2019) Multilayered hierarchical polymer composites for high energy density capacitors. J Mater Chem A 7:2965–2980

    CAS  Article  Google Scholar 

  29. 29

    Li H, Gadinski MR, Huang Y, Ren L, Zhou Y, Ai D, Han Z, Yao B, Wang Q (2020) Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy Environ Sci 13:1279–1286

    CAS  Article  Google Scholar 

  30. 30

    Li YS, Zhou Y, Zhu YJ, Cheng S, Yuan C, Hu J, He JL, Li Q (2020) Polymer nanocomposites with high energy density and improved charge–discharge efficiency utilizing hierarchically-structured nanofillers. J Mater Chem A 8:6576–6585

    CAS  Article  Google Scholar 

  31. 31

    Li Q, Zhang G, Liu F, Han K, Gadinski MR, Xiong C, Wang Q (2015) Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ Sci 8:922–931

    CAS  Article  Google Scholar 

  32. 32

    Chu HY, Fu C, Xu JJ, Li WY, Qian J, Nie W, Ran XH (2020) Carbon-doped inorganic nanoassemblies as fillers to tailor the dielectric and energy storage properties in polymer-based nanocomposites. Mater Des 188:108486

    CAS  Article  Google Scholar 

  33. 33

    Li L, Cheng JS, Cheng YY, Han T, Liang X, Zhao Y, Zhao GH, Dong LJ (2020) Polymer dielectrics exhibiting anomalously improved dielectric constant and simultaneously achieved high energy density and efficiency enabled by CdSe/Cd1–xZnxS quantum dots. J Mater Chem A 8:13659–13670

    CAS  Article  Google Scholar 

  34. 34

    Wang J, Liu SH, Wang JY, Hao HS, Zhao LM, Zhai JW (2017) Improving dielectric properties and energy storage performance of poly(vinylidene fluoride) nanocomposite by surface-modified SrTiO3 nanoparticles. J Alloys Compd 726:587–592

    CAS  Article  Google Scholar 

  35. 35

    Zhang HB, Zhu YW, Li ZY, Fan PY, Ma WG, Xie B (2018) High discharged energy density of polymer nanocomposites containing paraelectric SrTiO3 nanowires for flexible energy storage device. J Alloys Compd 744:116–123

    CAS  Article  Google Scholar 

  36. 36

    Yao LM, Pan ZB, Zhai JW, Zhang GZ, Liu ZY, Liu YH (2018) High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application. Compos A 109:48–54

    CAS  Article  Google Scholar 

  37. 37

    Khanchaitit P, Han K, Gadinski MR, Li Q, Wang Q (2013) Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat Commun 4:2845–2851

    Article  Google Scholar 

  38. 38

    Marwat MA, Xie B, Zhu Y, Fan P, Ma W, Liu H, Ashtar M, Xiao J, Salamon D, Samart C, Zhang H (2019) Largely enhanced discharge energy density in linear polymer nanocomposites by designing a sandwich structure. Compos Part A 121:115–122

    CAS  Article  Google Scholar 

Download references


This work was supported by Xi'an Technological University Starting Fund Project (Grant Nos. 0853/302020546).

Author information



Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Kevin Jones.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, Y. & Chen, W. Superior capacitive energy storage capability in polymer composites induced by polydopamine-coated paraelectric platelets. J Mater Sci 56, 9395–9407 (2021).

Download citation