Skip to main content

Advertisement

Log in

Sulfur-vacancies promoted performance of hierarchical NiCo2S4 nanotubes through electrospinning for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, one-dimensional (1D) NiCo2S4 nanotubes with sulfur vacancies (Vc-NiCo2S4) were designed effectively via the electrostatic spinning and chemical bath deposition (CBD) process. As-spun polyacrylonitrile (PAN) nanofibers containing surfactant were taken as hard templates. Through the in-situ growth and etching process, NiCo2S4 nanotubes covered with a large number of nanosheets were generated. Sulfur vacancies were introduced by the following chemical reduction. The influence of defects was systematically discussed through structure analyses and electrochemical properties. As-obtained Vc-NiCo2S4 not only maintains the original hierarchical nanotube characteristic, but also boost the electrochemical behaviors. Due to the defect treatment, Vc-NiCo2S4 nanotubes have a higher specific capacity (1046 F g−1 at a current density of 1 A g−1) and enhanced rate capability. A symmetrical supercapacitor (SSCs) device assembled by Vc-NiCo2S4 nanotubes displays a high energy density of 31.8 Wh kg−1 at the power density of 260 W kg−1. These results indicate that the construction of 1D hierarchical nanotubes and sulfur vacancies could provide effective strategy to promote the performance of supercapacitors.

Graphical abstract

1D NiCo2S4 hierarchical nanotubes were prepared by employing PAN nanofibers as sacrificial templates. The Vc-NiCo2S4 nanotubes after NaBH4 reduction maintain the original morphology and optimize the electrochemical activities. Vc-NiCo2S4 with sulfur vacancies exhibits enhanced electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sajjad M, Xu C, Guan LL, Zhang SY, Jiao YJ, Zhang SS, Lin YT, Ren Y, Zhou XB, Liu Z (2020) Influence of stirring time on the electrochemical properties of NiCo2S4 hexagonal plates and NiCo-OH nanoparticles as high-performance pseudocapacitor electrode materials. ChemistrySelect 5:2634–2642

    Article  CAS  Google Scholar 

  2. Zhang Y, Xu J, Zheng YY, Zhang YJ, Hu X, Xu TT (2017) NiCo2S4@NiMoO4 core-shell heterostructure nanotube arrays grown on ni foam as a binder-free electrode displayed high electrochemical performance with high capacity. Nanoscale Res Lett 12:412

    Article  Google Scholar 

  3. Gao YF, Wu BL, Hei JP, Gao DF, Xu X, Wei ZH, Wu HH (2020) Self-assembled synthesis of waxberry-like open hollow NiCo2S4 with enhanced capacitance for high-performance hybrid asymmetric supercapacitors. Electrochim Acta 347:136314

    Article  CAS  Google Scholar 

  4. Zhang MM, Liu H, Song ZX, Ma TJ, Xie JM (2020) Self-assembling NiCo2S4 nanorods arrays and T-Nb2O5 nanosheets/three-dimensional nitrogen-doped garphene hybrid nanoarchitectures for advanced asymmetric supercapacitor. Chem Eng J 392:123669

    Article  CAS  Google Scholar 

  5. Yuan Z, Zhang AT, Jiang DG, Mao N, Tian JM, Huang WG, Liu R, Liu JQ (2020) Hollow 3D frame structure mfied with NiCo2S4 nanosheets and spinous Fe2O3 nanowires as electrode materials for high-performance all-solid-state asymmetric supercapacitors. Chem Eur J 26:4790–4797

    Article  CAS  Google Scholar 

  6. Dakshana M, Meyvel S, Malarvizhi M, Sathya P, Ramesh R, Prabhu S, Silambarasan M (2020) Facile synthesis of CuCo2S4 nanoparticles as a faradaic electrode for high performance supercapacitor applications. Vacuum 174:109218

    Article  CAS  Google Scholar 

  7. Wang Y, Chen ZX, Li H, Zhang JJ, Yan XY, Jiang K, Engelsen DD, Ni LF, Xiang D (2016) The synthesis and electrochemical performance of core-shell structured Ni-Al layered double hydroxide/carbon nanotubes composites. Electrochim Acta 22:185–193

    Article  Google Scholar 

  8. Yu XY, Yu L, Shen LF, Song XH, Chen HY, Lou XW (2014) General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv Funct Mater 24:7440–7446

    Article  CAS  Google Scholar 

  9. Li L, Zhang X, Liu SA, Liang BL, Zhang YC, Zhang WM (2020) One-step hydrothermal synthesis of NiCo2S4 loaded on electrospun carbon nanofibers as an efficient counter electrode for dye-sensitized solar cells. Sol Energy 202:358–364

    Article  CAS  Google Scholar 

  10. Yang P, Feng LN, Hu J, Ling WQ, Wang SH, Shi JJ, Yang ZF, Wang FW (2019) Synthesis of the urchin-Like NiS@NiCo2S4 Composites on nickel foam for high-performance supercapacitors. ChemElectroChem 7:175–182

    Article  Google Scholar 

  11. Wang D, Tian LY, Huang JY, Li DW, Liu JY, Xu Y, Ke HZ, Wei QF (2020) “One for two” strategy to prepare MOF-derived NiCo2S4 nanorods grown on carbon cloth for high-performance asymmetric supercapacitors and efficient oxygen evolution reaction. Electrochim Acta 334:135636

    Article  CAS  Google Scholar 

  12. Huang YX, Cheng M, Xiang ZC, Cui YM (2018) Facile synthesis of NiCo2S4/CNTs nanocomposites for high-performance supercapacitors. Roy Soc Open Sci 5:180953

    Article  Google Scholar 

  13. Dong MX, Wang ZX, Yan GC, Wang JX, Guo HJ, Li XH (2020) Confine growth of NiCo2S4 nanoneedles in graphene framework toward high-performance asymmetric capacitor. J Alloy Compd 822:153645

    Article  CAS  Google Scholar 

  14. Liu C, Wu X, Xia H (2018) Flexible Mn-decorated NiCo2S4 core–shell nanowire arrays for a high performance hybrid supercapacitor electrode with a long cycle life. CrystEngComm 20:4735–4744

    Article  CAS  Google Scholar 

  15. Xue DF, Zhu DZ, Duan H, Wang ZW, Lv YK, Xiong W, Li LC, Liu MX, Gan LH (2019) Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chem Commun 55:11219–11222

    Article  CAS  Google Scholar 

  16. Niu CJ, Meng JS, Wang XS, Han CH, Yan MY, Zhao KN, Xu XM, Ren WH, Zhao YL, Xu L, Zhang QJ, Zhao DY, Mai LQ (2015) General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun 6:7402

    Article  Google Scholar 

  17. Yu JY, Zhou WJ, Xiong TL, Wang AL, Chen SW, Chu BL (2017) Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res 10:2599–2609

    Article  CAS  Google Scholar 

  18. Tsai C, Li H, Park S, Park J, Han HS, Nørskov JK, Zheng XL, Abild-Pedersen F (2017) Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun 8:5113

    Article  Google Scholar 

  19. Li H, Tsai C, Koh AL, Cai LL, Contryman AW, Fragapane AH, Zhao JH, Han HS, Manoharan HC, Abild-Pedersen F, Norskov JK, Zheng XL (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15:48–53

    Article  CAS  Google Scholar 

  20. Cai L, He JF, Liu QH, Yao T, Chen L, Yan WS, Hu FC, Jiang Y, Zhao YD, Hu TD, Sun ZH, Wei SQ (2015) Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc 137:2622

    Article  CAS  Google Scholar 

  21. Guo XL, Liu ZM, Liu F, Zhang J, Zheng LK, Hu YC, Mao J, Liu H, Xue YM, Tang CC (2020) Sulfur vacancy-tailored NiCo2S4 nanosheet arrays for the hydrogen evolution reaction at all pH values. Catal Sci Technol 10:1056–1065

    Article  CAS  Google Scholar 

  22. Wang XX, Zhou RS, Zhang CM, Xi SB, MiWM J, Tesfamichael T, Du AJ, Gui K, Ostrikov K, Wang HX (2020) Plasma-induced on-surface sulfur vacancies in NiCo2S4 enhance the energy storage performance of supercapatteries. J Mater Chem A 8:9278–9291

    Article  CAS  Google Scholar 

  23. Sun P, Wang RJ, Wang Q, Wang HW, Wang XF (2019) Uniform MoS2 nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor. Appl Surf Sci 475:793–802

    Article  CAS  Google Scholar 

  24. Zheng YY, Xu J, Yang XS, Zhang YJ, Shang YY, Hu XY (2018) Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem Eng J 333:111–121

    Article  CAS  Google Scholar 

  25. Chen HC, Jiang JJ, Zhao YD, Zhang L, Guo DQ, Xia DD (2015) One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J Mater Chem A 3:428–437

    Article  CAS  Google Scholar 

  26. Kumbhar VS, Chodankar NR, LeeK KDH (2019) Insights into the interfacial nanostructuring of NiCo2S4 and their electrochemical activity for ultra-high capacity all-solid-state flexible asymmetric supercapacitors. J Colloid Interf Sci 557:423–437

    Article  CAS  Google Scholar 

  27. Yang Y, Zeng DH, Shao S, Hao SJ, Zhu GL, Liu BJ (2019) Construction of core-shell mesoporous carbon nanofiber@nickel cobaltite nanostructures as highly efficient catalysts towards 4-nitrophenol reduction. J Colloid Interf Sci 538:377–386

    Article  CAS  Google Scholar 

  28. Yan YT, Bao K, Liu T, Cao J, Feng JC, Qi JL (2020) Minutes periodic wet chemistry engineering to turn bulk Co-Ni foam into hydroxide based nanosheets for efficient water decomposition. Chem Eng J 401:126092

    Article  CAS  Google Scholar 

  29. Lee HS, Pan J, Gund GS, Park HS (2020) Vertically Aligned NiCo2S4 nanosheets deposited on N-doped graphene for bifunctional and durable electrode of overall water splitting. Adv Mater Interfaces 7:2000138

    Article  CAS  Google Scholar 

  30. Hu W, Chen RQ, Xie W, Zou LL, Qin N, Bao DH (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Inter 6:19318–19326

    Article  CAS  Google Scholar 

  31. He YP, Zhang PP, Huang H, Li XB, Zhai XH, Chen BM, Guo ZC (2020) Engineering sulfur vacancies of Ni3S2 nanosheets as binder-free cathode for aqueous rechargeable Ni-Zn battery. ACS Appl Energy Mater 3:3863–3875

    Article  CAS  Google Scholar 

  32. Yan YT, Lin JH, Cao J, Guo S, Zheng XH, Feng JC, Qi JL (2019) Activating and optimizing activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through V doping effect enhanced by P vacancies. J Mater Chem A 7:24486–24492

    Article  CAS  Google Scholar 

  33. Huang XL, Gou L (2019) High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@polyaniline. Appl Surf Sci 487:68–76

    Article  CAS  Google Scholar 

  34. Jamshidifard S, Hosseini S, Rezaei S, Karamipour A, Jafari rad A, Irani M, (2019) Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J Hazard Mater 368:10–20

    Article  CAS  Google Scholar 

  35. Jiang JB, Sun YX, Chen YK, Hu XM, Zhu LY, Chen HT, Han S (2019) One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor. J Mater Sci 54:11936–11950

    Article  CAS  Google Scholar 

  36. Sainudeen SS, Asok LB, VargheseA NAS, Krishnan G (2017) Surfactant-driven direct synthesis of a hierarchical hollow MgO nanofibe-nanoparticle composite by electrospinning. RSC Adv 7:35160–35168

    Article  CAS  Google Scholar 

  37. Hou LR, Hua H, Bao RQ, Chen ZY, Yang C, Zhu SQ, Pang G, Tong LN, Yuan CZ, Zhang XG (2016) Anion-exchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties. ChemPlusChem 81:557–563

    Article  CAS  Google Scholar 

  38. Liu YK, Lu QL, Huang Z, Sun SQ, Yu B, Evariste U, Jiang GH, Yao JM (2018) Electrodeposition of Ni-Co-S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J Alloy Compd 762:301–311

    Article  CAS  Google Scholar 

  39. Liu LL, Annamalai KP, Tao YS (2016) A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors. New Carbon Mater 31:336–342

    Article  CAS  Google Scholar 

  40. Qi JL, Yan YT, Cai YF, Cao J, Feng JC (2021) Nanoarchitectured design of vertical-standing arrays for supercapacitors: progress, challenges, and perspectives. Adv Funct Mater 31:2006030

    Article  CAS  Google Scholar 

  41. Wang X, Yan CY, Sumboja A, Lee PS (2014) High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy 3:119–126

    Article  CAS  Google Scholar 

  42. Yin ZX, Chen YJ, Zhao Y, Li CY, Zhu CL, Zhang XT (2015) Hierarchical nanosheet-based CoMoO4-NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. J Mater Chem A 3:22750–22758

    Article  CAS  Google Scholar 

  43. Bai ZX, Liu SC, Chen P, Cheng GJ, Wu GY, Li H, Liu Y (2020) Nickel nanoparticles embedded in porous carbon nanofibers and its electrochemical properties. Nanotechnology 31(30):305705

    Article  CAS  Google Scholar 

  44. Feng CN, Tang HB, Guo XF, Zhang XL, Zheng JP (2020) Facile fabrication and capacitive performance of glucose-derived porous carbon. Mater Chem Phys 245:122785

    Article  CAS  Google Scholar 

  45. Hu QQ, Ma WQ, Liang G, Nan HH, Zhang XJ (2015) Anion-exchange reaction synthesized CoNi2S4 nanowires for superior electrochemical performances. RSC Adv 5:84974–84979

    Article  CAS  Google Scholar 

  46. Wu HL, He DW, Wang YS (2020) Facile one-step process synthesized reduced graphene oxide/Mn3O4 nanocomposite for a symmetric supercapacitor. Mater Lett 268:127613

    Article  CAS  Google Scholar 

  47. Ding R, Qi L, Jia MJ, Wang HY (2013) Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitor. Electrochim Acta 107:494–502

    Article  CAS  Google Scholar 

  48. Zhang Y, Zhang YH, Zhang YX, Si HC, Sun L (2019) Bimetallic NiCo2S4 nanoneedles anchored on mesocarbon microbeads as advanced electrodes for asymmetric supercapacitors. Nano-Micro Lett 011:229–243

    Article  Google Scholar 

  49. Li Y, An FF, Wu HR, Zhu SM, Lin CYZ, Xia MD, Xue K, Zhang D, Lian K (2019) A NiCo2S4/hierarchical porous carbon for high performance asymmetrical supercapacitor. J Power Sources 427:138–144

    Article  CAS  Google Scholar 

  50. Li Y, Cao L, Qiao L (2014) Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A 2:6540–6548

    Article  CAS  Google Scholar 

  51. Wang FP, Li GF, Zhou QQ, Zheng JF, Yang CX, Wang QZ (2017) One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors. Appl Surf Sci 425:180–187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (NSFC 51602289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ye, L., Guo, J. et al. Sulfur-vacancies promoted performance of hierarchical NiCo2S4 nanotubes through electrospinning for supercapacitors. J Mater Sci 56, 9368–9381 (2021). https://doi.org/10.1007/s10853-021-05874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05874-6

Navigation