Skip to main content
Log in

Solvent coordination engineering for high-quality hybrid organic-inorganic perovskite films

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Identifying the structure of iodoplumbate complexes in various solutions is essential for linking the coordination environment of the perovskite precursor to its final properties. In this study, we investigate the structure of methylammonium lead iodide (MAPbI3) perovskite precursor solutions as a function of the volume ratio of N,N-dimethylformamide and dimethyl sulfoxide (DMSO) using X-ray absorption fine structure spectroscopy. It was demonstrated that DMSO modifies the precursor structure at the atomic level. X-ray diffraction, scanning electron microscopy, and UV–Vis spectroscopy analyses showed that the coordination environment of iodoplumbate complexes in precursor solutions is strongly correlated with the morphology of perovskite films. The appropriate amount of DMSO in the precursor solution modifies the Pb-O and Pb-I coordination of iodoplumbate complexes, which could change the growth process of high-crystallization perovskite films. This study sheds light on the formation mechanism of perovskite films from precursor solutions, which will lead to the development of high-quality films and ultimately high-efficiency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gharibzadeh S, Hossain IM, Fassl P, Nejand BA, Abzieher T, Schultes M, Ahlswede E, Jackson P, Powalla M, Schäfer S, Rienäcker M, Wietler T, Peibst R, Lemmer U, Richards BS, Paetzold UW (2020) 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS. Adv Func Mater 30(19):1909919. https://doi.org/10.1002/adfm.201909919

    Article  CAS  Google Scholar 

  2. Mazzarella L, Lin YH, Kirner S, Morales-Vilches AB, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith HJ, Schlatmann R (2019) Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Advanced Energy Materials 9(14):1803241. https://doi.org/10.1002/aenm.201803241

    Article  CAS  Google Scholar 

  3. Haider SZ, Anwar H, Wang M (2019) Theoretical device engineering for high‐performance perovskite solar cells using CuSCN as hole transport material boost the efficiency above 25%. Physica Status Solidi (a) 216 (11):1900102. doi:https://doi.org/10.1002/pssa.201900102

  4. Kim DH, Muzzillo CP, Tong J, Palmstrom AF, Larson BW, Choi C, Harvey SP, Glynn S, Whitaker JB, Zhang F, Li Z, Lu H, van Hest MFAM, Berry JJ, Mansfield LM, Huang Y, Yan Y, Zhu K (2019) Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3(7):1734–1745. https://doi.org/10.1016/j.joule.2019.04.012

    Article  CAS  Google Scholar 

  5. NREL chart. https://www.nrel.gov/pv/cell-efficiency.html

  6. Papavassiliou GC, Patsis AP, Lagouvardos DJ, Koutselas IB (1993) Spectroscopic studies of (C10H21NH3)2PbI4, (CH3NH3)(C10H21NH3)2Pb2I7, (CH3NH3)PbI3, and similar compounds. Synth Met 57(1):3889–3894. https://doi.org/10.1016/0379-6779(93)90530-A

    Article  CAS  Google Scholar 

  7. Hirasawa M, Ishihara T, Goto T, Uchida K, Miura N (1994) Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3.Physica B: Condensed Matter (201):427–430. doi:https://doi.org/10.1016/0921-4526(94)91130-4.

  8. Zhao Y, Zhu K (2014) Solution chemistry engineering toward high-efficiency perovskite solar cells. J Phys Chem Lett 5(23):4175–4186. https://doi.org/10.1021/jz501983v

    Article  CAS  Google Scholar 

  9. Jung M, Ji SG, Kim G, Seok SI (2019) Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem Soc Rev 7(48):2011–2038. https://doi.org/10.1039/c8cs00656c

    Article  CAS  Google Scholar 

  10. Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH (2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9(9):687–692. https://doi.org/10.1038/nnano.2014.149

    Article  CAS  Google Scholar 

  11. Dou L, Yang YM, You J, Hong Z, Chang WH, Li G, Yang Y (2014) Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 5:5404. https://doi.org/10.1038/ncomms6404

    Article  CAS  Google Scholar 

  12. Park N-G (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4(15):2423–2429. https://doi.org/10.1021/jz400892a

    Article  CAS  Google Scholar 

  13. Deschler F, Price M, Pathak S, Klintberg LE, Jarausch D-D, Higler R, Hüttner S, Leijtens T, Stranks SD, Snaith HJ, Atatüre M, Phillips RT, Friend RH (2014) High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett 5(8):1421–1426. https://doi.org/10.1021/jz5005285

    Article  CAS  Google Scholar 

  14. Kamat PV (2014) Organometal halide perovskites for transformative photovoltaics. J Am Chem Soc 136(10):3713–3714. https://doi.org/10.1021/ja501108n

    Article  CAS  Google Scholar 

  15. Chen Q, Zhou H, Hong Z, Luo S, Duan HS, Wang HH, Liu Y, Li G, Yang Y (2014) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136(2):622–625. https://doi.org/10.1021/ja411509g

    Article  CAS  Google Scholar 

  16. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13(9):897–903. https://doi.org/10.1038/nmat4014

    Article  CAS  Google Scholar 

  17. Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG (2015) Highly Reproducible Perovskite Solar Cells With Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J Am Chem Soc 137 (27):8696–8699. https://doi.org/10.1021/jacs.5b04930

  18. Singh R, Suranagi SR, Kumar M, Shukla VK (2017) Investigations on the role of mixed-solvent for improved efficiency in perovskite solar cell. J Appl Phys 122(23):235302. https://doi.org/10.1063/1.4998630

    Article  CAS  Google Scholar 

  19. Hamill JC, Schwartz J, Loo Y-L (2017) Influence of solvent coordination on hybrid organic-inorganic perovskite formation. ACS Energy Lett 3(1):92–97. https://doi.org/10.1021/acsenergylett.7b01057

    Article  CAS  Google Scholar 

  20. Yan K, Long M, Zhang T, Wei Z, Chen H, Yang S, Xu J (2015) Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc 137(13):4460–4468. https://doi.org/10.1021/jacs.5b00321

    Article  CAS  Google Scholar 

  21. Sharenko A, Mackeen C, Jewell L, Bridges F, Toney MF (2017) Evolution of Iodoplumbate complexes in methylammonium lead iodide perovskite precursor solutions. Chem Mater 29(3):1315–1320. https://doi.org/10.1021/acs.chemmater.6b04

    Article  CAS  Google Scholar 

  22. Stamplecoskie KG, Manser JS, Kamat PV (2015) Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy Environ Sci 8(1):208–215. https://doi.org/10.1039/c4ee02988g

    Article  CAS  Google Scholar 

  23. Hamill JC, Romiluyi O, Thomas SA, Cetola J, Schwartz J, Toney MF, Clancy P, Loo Y-L (2020) Sulfur-donor solvents strongly coordinate Pb2+ in hybrid organic-inorganic perovskite precursor solutions. J Phys Chem C 124(27):14496–14502. https://doi.org/10.1021/acs.jpcc.0c03465

    Article  CAS  Google Scholar 

  24. Chu S, Zheng L, An P, Gong H, Hu T, Xie Y, Zhang J (2017) Time-resolved XAFS measurement using quick-scanning techniques at BSRF. J Synch Rad 24(3):674–678. https://doi.org/10.1107/s1600577517005276

    Article  CAS  Google Scholar 

  25. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synch Rad 12(4):537–541. https://doi.org/10.1107/s0909049505012719

    Article  CAS  Google Scholar 

  26. Wakamiya A, Endo M, Sasamori T, Tokitoh N, Ogomi Y, Hayase S, Murata Y (2014) Reproducible fabrication of efficient perovskite-based solar cells: x-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem Lett 43(5):711–713. https://doi.org/10.1246/cl.140074

    Article  CAS  Google Scholar 

  27. cLeod JA, Wu Z, Sun B, Liu L (2016) The influence of the I/Cl ratio on the performance of CH3NH3PbI(3–x)Cl(x)-based solar cells: why is CH3NH3I : PbCl2 = 3: 1 the “magic” ratio? Nanoscale 8(12):6361–6368. https://doi.org/10.1039/c5nr06217a

    Article  Google Scholar 

  28. Persson I, Lyczko K, Lundberg D, Eriksson L, Placzek A (2011) Coordination chemistry study of hydrated and solvated lead(II) ions in solution and solid state. Inorg Chem 50(3):1058–1072. https://doi.org/10.1021/ic1017714

    Article  CAS  Google Scholar 

  29. Gao L, Zhang F, Xiao C, Chen X, Larson BW, Berry JJ, Zhu K (2019) Improving Charge Transport via Intermediate-Controlled Crystal Growth in 2D Perovskite Solar Cells. Adv Func Mater 29(47):1901652. https://doi.org/10.1002/adfm.201901652

    Article  CAS  Google Scholar 

  30. Mei AY, Li X, Liu LF, Ku ZL, Liu TF, Rong YG, Xu M, Hu M, Chen JZ, Yang Y, Gratzel M, Han HW (2014) Science 345:295–298. https://doi.org/10.1126/science.1254763

    Article  CAS  Google Scholar 

  31. Runa A, Feng S, Wen G, Feng F, Wang J, Liu L, Su P, Yang H, Fu W (2017) Highly reproducible perovskite solar cells based on solution coating from mixed solvents. J Mater Sci 53(5):3590–3602. https://doi.org/10.1007/s10853-017-1842-7

    Article  CAS  Google Scholar 

  32. Cai B, Zhang W-H, Qiu J (2015) Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells. Chin J Catal 36(8):1183–1190. https://doi.org/10.1016/s1872-2067(15)60929-9

    Article  CAS  Google Scholar 

  33. Li B, Li M, Fei C, Cao G, Tian J (2017) Colloidal engineering for monolayer CH3NH3PbI3 films toward high performance perovskite solar cells. J Mater Chem A 5(46):24168–24177. https://doi.org/10.1039/c7ta08761f

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Key Research and Development Program of China (grant No.2017YFA0403400) and the National Natural Science Foundation of China (NSFC) (U1932201, grant No.11705225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lirong Zheng or Jing Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, S., Chu, S., An, P. et al. Solvent coordination engineering for high-quality hybrid organic-inorganic perovskite films. J Mater Sci 56, 9903–9913 (2021). https://doi.org/10.1007/s10853-021-05870-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05870-w

Navigation