Skip to main content
Log in

A novel phthalazinone-based epoxy resin with excellent rheological property and intrinsic flame retardancy

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Phthalazinone is a critical structural factor for high-performance polymer material, which is achieved by polar structure and the structure characteristic of unsymmetrical and kink non-coplanar. In this study, a novel phthalazinone-based epoxy (EEPZ) has been designed and synthesized. The rheological behaviors, thermal stability and combustion behaviors of cured systems have been investigated by dynamic rheology, TGA, DMA, UL-94 vertical burning and cone calorimetry tests. It was found that the phthalazinone-based EEPZ epoxy resin had the lower melting viscosity within broader processing window and enhanced char forming ability for bisphenol A epoxy/4′4-diamino-diphenyl sulfone (E44/DDS) system. When combined with only 20 wt% EEPZ in the E44 system, the E44/20%EEPZ/DDS, passed the UL-94 V-0 rating. In the combustion test, the total heat release, total smoke production and peak of heat release rate were sharply respectively decreased by 44.7%, 24.3% and 44.6% in the case of E44/20%EEPZ/DDS compared with E44/DDS. The results of morphology characterization chemical structure and component for residue char in EEPZ epoxy resin confirmed that the phthalazinone group can lead to form nitrogen-containing compact char layer during combustion. The combined technologies (TGA-FTIR, Py-GC/MS) was utilized to detect the pyrolysis process of the crosslinks system and the charring mechanism. Simultaneously, the tensile strength and tensile modulus of the composites were also improved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Wu JN, Chen L, Fu T, Zhao HB, Guo DM, Wang XL, Wang YZ (2018) New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chem Eng J 336:622–632. https://doi.org/10.1016/j.cej.2017.12.047

    Article  CAS  Google Scholar 

  2. Jiang J, Cheng YB, Liu Y, Wang Q, He YS, Wang BW (2015) Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites. J Mater Chem A 3(8):4284–4290. https://doi.org/10.1039/c4ta06486k

    Article  CAS  Google Scholar 

  3. Shao ZB, Zhang MX, Li Y, Han Y, Ren L, Deng C (2018) A novel multi-functional polymeric curing agent: Synthesis, characterization and its epoxy resin with simultaneous excellent flame retardance and transparency. Chem Eng J 345:471–482. https://doi.org/10.1016/j.cej.2018.03.142

    Article  CAS  Google Scholar 

  4. Wang P, Xia L, Jian RK, Ai YF, Zheng XL, Chen GL, Wang JS (2018) Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: Preparation, thermal stability and flame retardance. Polym Degrad Stab 149:69–77. https://doi.org/10.1016/j.polymdegradstab.2018.01.026

    Article  CAS  Google Scholar 

  5. Zhang WC, Li XM, Guo XY, Yang RJ (2010) Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites. Polym Degrad Stab 95(12):2541–2546. https://doi.org/10.1016/j.polymdegradstab.2010.07.036

    Article  CAS  Google Scholar 

  6. Tan Y, Shao ZB, Yu LX, Long JW, Qi M, Chen L, Wang YZ (2016) Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polym Chem 7(17):3003–3012. https://doi.org/10.1039/c6py00434b

    Article  CAS  Google Scholar 

  7. Wang YZ, Zhao JQ, Yuan YC, Liu SM, Feng ZM, Zhao Y (2014) Synthesis of maleimido-substituted aromatic s-triazine and its application in flame-retarded epoxy resins. Polym Degrad Stab 99:27–34. https://doi.org/10.1016/j.polymdegradstab.2013.12.015

    Article  CAS  Google Scholar 

  8. Zhu ZM, Lin PL, Wang H, Wang LX, Yu B, Yang FH (2020) A facile one-step synthesis of highly efficient melamine salt reactive flame retardant for epoxy resin. J Mater Sci 55(27):12836–12847. https://doi.org/10.1007/s10853-020-04935-6

    Article  CAS  Google Scholar 

  9. Qian LJ, Qiu Y, Sun N, Xu ML, Xu GZ, Xin F, Chen YJ (2014) Pyrolysis route of a novel flame retardant constructed by phosphaphenanthrene and triazine-trione groups and its flame-retardant effect on epoxy resin. Polym Degrad Stab 107:98–105. https://doi.org/10.1016/j.polymdegradstab.2014.05.007

    Article  CAS  Google Scholar 

  10. Yang A-H, Deng C, Chen H, Wei Y-X, Wang Y-Z (2017) A novel Schiff-base polyphosphate ester: Highly-efficient flame retardant for polyurethane elastomer. Polym Degrad Stab 144:70–82. https://doi.org/10.1016/j.polymdegradstab.2017.08.007

    Article  CAS  Google Scholar 

  11. Huo S, Wang J, Yang S, Wang J, Zhang B, Zhang B, Chen X, Tang Y (2016) Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione and phosphaphenanthrene and its flame retardant effect on epoxy resin. Polym Degrad Stab 131:106–113. https://doi.org/10.1016/j.polymdegradstab.2016.07.013

    Article  CAS  Google Scholar 

  12. Li ZQ, Yang RJ (2014) Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polym Degrad Stab 109:233–239. https://doi.org/10.1016/j.polymdegradstab.2014.07.024

    Article  CAS  Google Scholar 

  13. Shi YQ, Fu T, Xu YJ, Li DF, Wang XL, Wang YZ (2018) Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem Eng J 354:208–219. https://doi.org/10.1016/j.cej.2018.08.023

    Article  CAS  Google Scholar 

  14. Huo SQ, Wang J, Yang S, Li C, Wang XL, Cai HP (2019) Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin. Polym Degrad Stab 159:79–89. https://doi.org/10.1016/j.polymdegradstab.2018.11.021

    Article  CAS  Google Scholar 

  15. Zhang WC, He XD, Song TL, Jiao QJ, Yang RJ (2014) The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polym Degrad Stab 109:209–217. https://doi.org/10.1016/j.polymdegradstab.2014.07.023

    Article  CAS  Google Scholar 

  16. Park SJ, Jin FL, Lee JR, Shin JS (2005) Cationic polymerization and physicochemical properties of a biobased epoxy resin initiated by thermally latent catalysts. Eur Polymer J 41(2):231–237. https://doi.org/10.1016/j.eurpolymj.2004.09.011

    Article  CAS  Google Scholar 

  17. Wan JT, Gan B, Li C, Molina-Aldareguia J, Li Z, Wang X, Wang DY (2015) A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. J Mater Chem A 3(43):21907–21921. https://doi.org/10.1039/c5ta02939b

    Article  CAS  Google Scholar 

  18. Bao F, Zong L, Li N, Song Y, Pan Y, Wang J, Jian X (2020) Synthesis of novel poly(phthalazinone fluorenyl ether ketone ketone)s with improved thermal stability and processability. Thermochim Acta. https://doi.org/10.1016/j.tca.2018.12.028

    Article  Google Scholar 

  19. Bao F, Song Y, Liu Q, Song C, Liu C, Wang J, Jian X, Xiao J (2019) Partial bio-based poly (aryl ether ketone) derived from 2,5-furandicarboxylic acid with enhanced processability. Polym Degrad Stab 161:309–318. https://doi.org/10.1016/j.polymdegradstab.2018.12.008

    Article  CAS  Google Scholar 

  20. Zhang G, Zhou YX, Li Y, Wang XJ, Long SR, Yang J (2015) Investigation of the synthesis and properties of isophorone and ether units based semi-aromatic polyamides. Rsc Advances 5(62):49958–49967. https://doi.org/10.1039/c5ra04116c

    Article  CAS  Google Scholar 

  21. Song T, Li ZS, Liu JG, Yang SY (2013) Synthesis, characterization and properties of novel crystalline epoxy resin with good melt flowability and flame retardancy based on an asymmetrical biphenyl unit. Polym Sci Series B 55(3–4):147–157. https://doi.org/10.1134/s156009041303007x

    Article  CAS  Google Scholar 

  22. Liang B, Wang JB, Hu JH, Li CF, Li RK, Liu Y, Zeng K, Yang G (2019) TG-MS-FTIR study on pyrolysis behavior of phthalonitrile resin. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2019.108954

    Article  Google Scholar 

  23. Samartzis PC, Wodtke AM (2006) All-nitrogen chemistry: how far are we from N-60? Int Rev Phys Chem 25(4):527–552. https://doi.org/10.1080/01442350600879319

    Article  CAS  Google Scholar 

  24. Carja ID, Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Coroaba A, Lisa G, Lopez CG, Soriano MF, Perez VF, Sanchez MDR (2014) A straightforward, eco-friendly and cost-effective approach towards flame retardant epoxy resins. J Mater Chem A 2(38):16230–16241. https://doi.org/10.1039/c4ta03197k

    Article  CAS  Google Scholar 

  25. Tang S, Qian LJ, Liu XX, Dong YP (2016) Gas-phase flame-retardant effects of a bi-group compound based on phosphaphenanthrene and triazine-trione groups in epoxy resin. Polym Degrad Stab 133:350–357. https://doi.org/10.1016/j.polymdegradstab.2016.09.014

    Article  CAS  Google Scholar 

  26. Liu JC, Rad IY, Sun F, Stansbury JW (2014) Photo-reactive nanogels as a means to tune properties during polymer network formation. Polym Chem 5(1):227–233. https://doi.org/10.1039/c3py00870c

    Article  CAS  Google Scholar 

  27. Liu T, Sun LC, Ou RX, Fan Q, Li LP, Guo CG, Liu ZZ, Wang QW (2019) Flame retardant eugenol-based thiol-ene polymer networks with high mechanical strength and transparency. Chem Eng J 368:359–368. https://doi.org/10.1016/j.cej.2019.02.200

    Article  CAS  Google Scholar 

  28. Qiu SL, Xing WY, Feng XM, Yu B, Mu XW, Yuen RKK, Hu Y (2017) Self-standing cuprous oxide nanoparticles on silica@ polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chem Eng J 309:802–814. https://doi.org/10.1016/j.cej.2016.10.100

    Article  CAS  Google Scholar 

  29. Zhao XM, Xiao D, Alonso JP, Wang DY (2017) Inclusion complex between beta-cyclodextrin and phenylphosphonicdiamide as novel bio-based flame retardant to epoxy: Inclusion behavior, characterization and flammability. Mater Des 114:623–632. https://doi.org/10.1016/j.matdes.2016.11.093

    Article  CAS  Google Scholar 

  30. Zhang HK, Xu MJ, Li B (2016) Synthesis of a novel phosphorus-containing curing agent and its effects on the flame retardancy, thermal degradation and moisture resistance of epoxy resins. Polym Adv Technol 27(7):860–871. https://doi.org/10.1002/pat.3722

    Article  CAS  Google Scholar 

  31. Zhao D, Wang J, Wang XL, Wang YZ (2018) Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures. Chem Eng J 344:419–430. https://doi.org/10.1016/j.cej.2018.03.102

    Article  CAS  Google Scholar 

  32. Yang S, Wang J, Huo SQ, Wang M, Cheng LF (2015) Synthesis of a phosphorus/nitrogen-containing additive with multifunctional groups and its flame-retardant effect in epoxy resin. Ind Eng Chem Res 54(32):7777–7786. https://doi.org/10.1021/acs.iecr.5b02026

    Article  CAS  Google Scholar 

  33. Guan YH, Huang JQ, Yang JC, Shao ZB, Wang YZ (2015) An effective way to flame-retard biocomposite with ethanolamine modified ammonium polyphosphate and its flame retardant mechanisms. Ind Eng Chem Res 54(13):3524–3531. https://doi.org/10.1021/acs.iecr.5b00123

    Article  CAS  Google Scholar 

  34. Brown NMD, Hewitt JA, Meenan BJ (1992) X-ray-induced beam damage observed during x-ray photoelectron-spectroscopy (xps) studies of palladium electrode ink materials. Surf Interface Anal 18(3):187–198. https://doi.org/10.1002/sia.740180304

    Article  CAS  Google Scholar 

  35. Rao WH, Xu HX, Xu YJ, Qi M, Liao W, Xu SM, Wang YZ (2018) Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chem Eng J 343:198–206. https://doi.org/10.1016/j.cej.2018.03.013

    Article  CAS  Google Scholar 

  36. Feng YZ, He CG, Wen YF, Ye YS, Zhou XP, Xie XL, Mai YW (2018) Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater 346:140–151. https://doi.org/10.1016/j.jhazmat.2017.12.019

    Article  CAS  Google Scholar 

  37. Liang WJ, Zhao B, Zhao PH, Zhang CY, Liu YQ (2017) Bisphenol-S bridged penta (anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation and flame retardancy. Polym Degrad Stab 135:140–151. https://doi.org/10.1016/j.polymdegradstab.2016.11.023

    Article  CAS  Google Scholar 

  38. Zhu ZM, Wang LX, Dong LP (2019) Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin. Polym Degrad Stab 162:129–137. https://doi.org/10.1016/j.polymdegradstab.2019.02.021

    Article  CAS  Google Scholar 

  39. Dong L-P, Deng C, Li R-M, Cao Z-J, Lin L, Chen L, Wang Y-Z (2016) Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system. Rsc Advances 6(36):30436–30444. https://doi.org/10.1039/c6ra00164e

    Article  CAS  Google Scholar 

  40. Bao F, Liu C, Song YY, Wu ZQ, Wang JY, Jian XG (2018) Synthesis of Phthalazinone-containing Poly(aryl-ether-ketone) block copolymers with good solubility and high thermal stability. Acta Polym Sin 6:692–699. https://doi.org/10.11777/j.issn1000-3304.2017.17265

    Article  CAS  Google Scholar 

  41. Dong L-P, Huang S-C, Li Y-M, Deng C, Wang Y-Z (2016) A novel linear-chain polyamide charring agent for the fire safety of noncharring polyolefin. Ind Eng Chem Res 55(26):7132–7141. https://doi.org/10.1021/acs.iecr.6b01308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (nos. U1663226, 51673033 and 51873027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinyan Wang or Xigao Jian.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, Y., Weng, Z. et al. A novel phthalazinone-based epoxy resin with excellent rheological property and intrinsic flame retardancy. J Mater Sci 56, 9079–9092 (2021). https://doi.org/10.1007/s10853-021-05863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05863-9

Navigation