Electrospun Poly[poly(2,5-benzophenone)]bibenzopyrrolone/polyimide nanofiber membrane for high-temperature and strong-alkali supercapacitor

Abstract

The separator is an important component for energy storage devices. At present, the membranes for supercapacitors are rare, especially the ones that work with an alkaline electrolyte. Herein, a type of flexible and highly porous polymer hybrid nanofiber membrane was prepared via a facile electrospinning process and served as a separator for supercapacitor’s work with strong alkaline electrolyte. As obtained, poly[poly(2,5-benzophenone)]bibenzopyrrolone/polyimide (PBPY/PI) membrane showed good thermal stability, high mechanical strength, large electrolyte uptake (452%), and fast ion conductivity (0.68 mS/cm). Moreover, PBPY/PI membrane exhibited excellent alkali resistance. The supercapacitor assembled with PBPY/PI membrane showed much better performance than those assembled with a commercial polypropylene membrane and electrospun polyimide nanofiber membrane and was found without capacitance loss after charge/discharge at 30 A/g for 10,000 cycles at 80 °C. The PBPY/PI membrane is a good candidate with temperature resistance and alkali resistance for high-performance supercapacitors.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1

    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    CAS  Article  Google Scholar 

  2. 2

    Poonam KS, Arora A, Tripathi SK (2019) Review of supercapacitors: Materials and devices. J Energy Storage 21:801–825

    Article  Google Scholar 

  3. 3

    You B, Kang F, Yin PQ, Zhang Q (2016) Hydrogel-derived heteroatom-doped porous carbon networks for supercapacitor and electrocatalytic oxygen reduction. Carbon 103:9–15

    CAS  Article  Google Scholar 

  4. 4

    Zhang JL, Chen GL, Zhang Q, Kang F, You B (2015) Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction. ACS Appl Mater Interfaces 7:12760–12766

    CAS  Article  Google Scholar 

  5. 5

    Goodman BA (2020) Utilization of Waste Straw and Husks from Rice Production: A Review. J Bioresour Bioprod 5:143–162

    CAS  Article  Google Scholar 

  6. 6

    Han ZQ, Zhong WT, Wang K (2020) Preparation and examination of nitrogen-doped bamboo porous carbon for supercapacitor materials. J For Eng 5:76–83

    Google Scholar 

  7. 7

    Wang ZL, Hu CS, Tu DY, Zhang WW, Guan LT (2020) Preparation and adsorption property of activated carbon made from Camellia olerea shells. J For Eng 5:96–102

    Google Scholar 

  8. 8

    Liu X, You B, Yu XY, Chipman J, Sun YJ (2016) Electrochemical oxidation to construct a nickel sulfide/oxide heterostructure with improvement of capacitance. J Mater Chem A 4:11611–11615

    CAS  Article  Google Scholar 

  9. 9

    Simon P, Gogotsi Y (2020) Perspectives for electrochemical capacitors and related devices. Nat Mater 19:1151–1163

    CAS  Article  Google Scholar 

  10. 10

    Lu C, Chen X (2020) Latest advances in flexible symmetric supercapacitors: from material engineering to wearable applications. Acc Chem Res 53:1468–1477

    CAS  Article  Google Scholar 

  11. 11

    He S, Zhang C, Du C, Cheng C, Chen W (2019) High rate-performance supercapacitor based on nitrogen-doped hollow hexagonal carbon nanoprism arrays with ultrathin wall thickness in situ fabricated on carbon cloth. J Power Sources 434:226701

    CAS  Article  Google Scholar 

  12. 12

    Li L, Zhang Y, Lu HY, Wang YF, Xu JS, Zhu JX, Zhang C, Liu TX (2020) Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat Commun 11:62

    Article  CAS  Google Scholar 

  13. 13

    Lai FL, Yang C, Lian RQ, Chu KB, Qin JJ, Zong W, Rao DW, Hofkens J, Lu XH, Liu TX (2020) Three-Phase Boundary in Cross-Coupled Micro-Mesoporous Networks Enabling 3D-Printed and Ionogel-Based Quasi-Solid-State Micro-Supercapacitors. Adv Mater 32:2002474

    CAS  Article  Google Scholar 

  14. 14

    Pan GX, Cao F, Zhang YJ, Xia XH (2020) N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors. J Mater Sci Technol 55:144–151. https://doi.org/10.1016/j.jmst.2019.10.004

    Article  Google Scholar 

  15. 15

    Wang YF, Zhang L, Hou HQ, Xu WH, Duan GG, He SJ, Liu KM, Jiang SH (2021) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 56:173–200. https://doi.org/10.1007/s10853-020-05157-6

    CAS  Article  Google Scholar 

  16. 16

    Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1:3807–3835

    Article  Google Scholar 

  17. 17

    Wang DW, Lu ZM, Xu L (2020) Microstructure design of porous nanocarbons for ultrahigh-energy and power density supercapacitors in ionic liquid electrolyte. J Mater Sci 55:7477–7491. https://doi.org/10.1007/s10853-020-04538-1

    CAS  Article  Google Scholar 

  18. 18

    Xu D, Teng G, Heng Y, Chen Z, Hu D (2020) Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator. Mater Chem Phys 249:122979

    CAS  Article  Google Scholar 

  19. 19

    Wei DW, Wei HY, Gauthier AC, Song JL, Jin Y, Xiao HN (2020) Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. J Bioresour Bioprod 5:1–15

    CAS  Article  Google Scholar 

  20. 20

    Zheng CX, Zhu SL, Lu Y, Mei CT, Xu XW, Yue YY, Han JQ (2020) Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J For Eng 5:93–100

    Google Scholar 

  21. 21

    Teng G, Lin S, Xu D, Heng Y, Hu D (2020) Renewable cellulose separator with good thermal stability prepared via phase inversion for high-performance supercapacitors. J Mater Sci Mater El 31:7916–7926. https://doi.org/10.1007/s10854-020-03330-w

    CAS  Article  Google Scholar 

  22. 22

    Szubzda B, Szmaja A, Ozimek M, Mazurkiewicz S (2014) Polymer membranes as separators for supercapacitors. Appl Phys A 117:1801–1809

    CAS  Article  Google Scholar 

  23. 23

    Hou HQ, Xu WH, Ding YC (2018) The recent progress on high-performance polymer nanofibers by electrospinning. J Jiangxi Normal Univ (Nat Sci) 42:551–564

    Google Scholar 

  24. 24

    Pang Z, Duan J, Zhao Y, Tang Q, He B, Yu L (2018) A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140 °C. J Power Sources 400:126–134

    CAS  Article  Google Scholar 

  25. 25

    Liu M, Turcheniuk K, Fu W, Yang Y, Liu M, Yushin G (2020) Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire Polyvinyl butyral nonwoven membranes. Nano Energy 71:104627

    CAS  Article  Google Scholar 

  26. 26

    Sharma M, Gaur A, Quamara JK (2020) Swift heavy ions irradiated PVDF/BaTiO3 film as a separator for supercapacitors. Solid State Ionics 352:115342

    CAS  Article  Google Scholar 

  27. 27

    Qin B, Han Y, Ren Y, Sui D, Zhou Y, Zhang M, Sun Z, Ma Y, Chen Y (2018) A ceramic-based separator for high-temperature supercapacitors. Energy Technol 6:306–311

    CAS  Article  Google Scholar 

  28. 28

    Miao XR, Lin JY, Bian FG (2020) Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J Bioresour Bioprod 5:26–36

    Article  Google Scholar 

  29. 29

    Sun DL, Ji XQ, Wang ZH, Sun ZY, Zhu ZH (2020) Research progress and development trends of wood ceramics. J For Eng 5:1–10

    Article  Google Scholar 

  30. 30

    Wang ZH, Xu KM, Zhang YL, Wu JX, Lin X, Liu C, Hua J (2020) Study on electro-spin performance of different types of cellulose by activation in the solvent of LiCl/DMAc. J For Eng 5:108–113

    CAS  Google Scholar 

  31. 31

    Ding Y, Hou H, Zhao Y, Zhu Z, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103

    CAS  Article  Google Scholar 

  32. 32

    Xu W, Ding Y, Yang T, Yu Y, Huang R, Zhu Z, Fong H, Hou H (2017) An innovative approach for the preparation of high-performance electrospun poly(p-phenylene)-based polymer nanofiber belts. Macromolecules 50:9760–9772

    CAS  Article  Google Scholar 

  33. 33

    Wang YC, Quirk RP (1995) Synthesis and characterization of poly(benzoyl-l,4-phenylene)s. 2. Catalyst coligand effects on polymer properties. Macromolecules 28:3495–3501

    CAS  Article  Google Scholar 

  34. 34

    Yamamoto T, Wakabayashi S, Osakada K (1992) Mechanism of C-C coupling reactions of aromatic halides, promoted by Ni(COD)2, in the presence of 2,2’-bipyridine and PPh3, to give biaryls. J Organomet Chem 428:223–237

    CAS  Article  Google Scholar 

  35. 35

    Miller JM, Balasanmugam K (1989) Characterization of metal complexes of 1,10-phenanthroline, 2,2’-bipyridine, and their derivatives by fast atom bombardment mass spectrometry. Can J Chem 67:1496–1500

    CAS  Article  Google Scholar 

  36. 36

    Yamamoto T, Sanechika K, Yamamoto A (1980) Preparation of thermostable and electric-conducting poly(2,5-theienylene). J Polym Sci Polym Lett Ed 18:9–12

    CAS  Article  Google Scholar 

  37. 37

    Cao L, An P, Xu Z, Huang J (2016) Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem 767:34–39

    CAS  Article  Google Scholar 

  38. 38

    Jiang H, Emmett RK, Roberts ME (2019) Building thermally stable supercapacitors using temperature-responsive separators. J Appl Electrochem 49:271–280

    CAS  Article  Google Scholar 

  39. 39

    Li YS, Wang SH, Zheng MN, Liu J (2018) Thermal behavior analysis of stacked-type supercapacitors with different cell structures. CSEE J Power Energy 4:112–120

    Article  Google Scholar 

  40. 40

    Lamberti A, Serrapede M, Ferraro G, Fontana M, Perrucci F, Bianco S, Chiolerio A, Bocchini S (2017) All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater 4(3):035012

    Article  CAS  Google Scholar 

  41. 41

    Huo PF, Xun ZY, Ni SP, Liu Y, Wang GB, Gu JY (2019) Crosslinked quaternized poly(arylene ether sulfone) copolymer membrane applied in an electric double-layer capacitor for high energy density. J Appl Polym Sci 136(30):47759

    Article  CAS  Google Scholar 

  42. 42

    Raja M, Sadhasivam B, Naik RJ, Dhamodharan R, Ramanujam K (2019) A chitosan/poly(ethylene glycol)-ran-poly(propylene glycol) blend as an eco-benign separator and binder for quasi-solid-state supercapacitor applications. Sustain Energy Fuels 3:760–773

    CAS  Article  Google Scholar 

  43. 43

    He T, Fu Y, Meng X, Yu X, Wang X (2018) A novel strategy for the high performance supercapacitor based on polyacrylonitrile-derived porous nanofibers as electrode and separator in ionic liquid electrolyte. Electrochim Acta 282:97–104

    CAS  Article  Google Scholar 

  44. 44

    Liu W, Ju J, Deng N, Wang L, Wang G, Li L, Kang W, Cheng B (2020) Designing inorganic-organic nanofibrous composite membrane for advanced safe Li-ion capacitors. Electrochim Acta 337:135821

    CAS  Article  Google Scholar 

  45. 45

    Gong W, Wang X, Li Z, Gu J, Ruan S, Shen C (2018) A high-strength PPESK/PVDF fibrous membrane prepared by coaxial electrospinning for lithium-ion battery separator. High Perform Polym 31:948–958

    Article  CAS  Google Scholar 

  46. 46

    Heng Y, Xie T, Wang X, Chen D, Wen J, Chen X, Hu D, Wang N, Wu Y (2020) Raw cellulose/polyvinyl alcohol blending separators prepared by phase inversion for high-performance supercapacitors. Nanotechnology 32:095403

    Article  CAS  Google Scholar 

  47. 47

    He T, Jia R, Lang X, Wu X, Wang Y (2017) Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor. J Electrochem Soc 164:E379–E384

    CAS  Article  Google Scholar 

  48. 48

    Sun XZ, Zhang X, Huang B, Ma YW (2014) Effects of separator on the electrochemical performance of electrical double-layer capacitor and hybrid battery-supercapacitor. Acta Phys Chim Sin 30:485–491

    CAS  Article  Google Scholar 

  49. 49

    Li KB, Shi DW, Cai ZY, Zhang GL, Huang QA, Liu D, Yang CP (2015) Studies on the equivalent serial resistance of carbon supercapacitor. Electrochim Acta 174:596–600

    CAS  Article  Google Scholar 

  50. 50

    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China through Grants 031020185 and 21774053. We also thank Advanced Analysis & Testing Center, Nanjing Forestry University for material characterization.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Seema Agarwal or Shuijian He or Haoqing Hou.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Joshua Tong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, D., Yan, B., Agarwal, S. et al. Electrospun Poly[poly(2,5-benzophenone)]bibenzopyrrolone/polyimide nanofiber membrane for high-temperature and strong-alkali supercapacitor. J Mater Sci (2021). https://doi.org/10.1007/s10853-021-05860-y

Download citation