Skip to main content

Advertisement

Log in

Pulse discharge characterization of perovskite dielectric ceramics

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The pulse discharge characterization of perovskite dielectric ceramics, which has confronted a barrier between research and application, has the problems of inconsistent test standards and lack of comparability. To mitigate this issue and further advance the application process, we suggest an extrinsic standard (for convenience of comparison) for energy dielectric ceramics of thickness (0.2 mm), electrode area (4 mm2) and operation voltage (2 kV). We report the pulse discharge performance parameters of three typical dielectric materials: relaxor ferroelectric (Na0.5Bi0.5)0.9Li0.1Ti0.9Ta0.1O3 (NBLTT), paraelectric Ca0.6Sr0.4TiO3 (CST) and linear dielectric K0.5Na0.5NbO3 (KNN) glass ceramics through computer simulation and fitting of pulse discharge curves based on the resistance-inductance-capacitor pulse discharge circuit. The NBLTT ceramics exhibited higher peak current (16 A under 100 kV/cm) and stability with minimal variation less than 15% from 20 to 150 °C during pulse discharge compared with linear dielectric and ferroelectric glass ceramics. In addition, the NBLTT system holds the fast discharge time (90% of the discharge energy density released in about 100 ns) and good fatigue resistance. The short discharge time, high thermal stability and low medium voltage (500–5000 V) make the NBLTT ceramics promising for pulse capacitor in large current and low electric operation voltage conditions. An operable comparison standard and the research frontiers of pulsed dielectric materials are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Palneedi H, Peddigari M, Hwang G-T, Jeong D-Y, Ryu J (2018) High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 28:1803665

    Google Scholar 

  2. Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S et al (2017) Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 29:1601727

    Google Scholar 

  3. Sun Z, Wang Z, Tian Y, Wang G, Wang W, Yang M et al (2019) Progress, Outlook, and Challenges in Lead-Free Energy-Storage Ferroelectrics. Adv Electron Mater 6:1900698

    Google Scholar 

  4. Liu Z, Lu T, Ye J, Wang G, Dong X, Withers R et al (2018) Antiferroelectrics for Energy Storage Applications: a Review. Adv Mater Technol 3:1800111

    Google Scholar 

  5. Hao X (2013) A review on the dielectric materials for high energy-storage application. J Adv Dielectr 03:1330001

    Google Scholar 

  6. Liu S, Shen B, Hao H, Zhai J (2019) Glass–ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications. J Mater Chem C. 7:15118–15135

    CAS  Google Scholar 

  7. Zhang Lei, Pu Yongping, Chen Min, (2019) Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics. J Alloys Compd 775:342–347

    CAS  Google Scholar 

  8. Chauhan A, Patel S, Vaish R, Bowen CR (2015) Anti-ferroelectric ceramics for high energy density capacitors. Materials 8:8009–8031

    Google Scholar 

  9. Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H et al (2019) Recent advances in lead-free dielectric materials for energy storage. Mater Res Bull 113:190–201

    CAS  Google Scholar 

  10. Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H et al (2019) Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108

    CAS  Google Scholar 

  11. Huan TD, Boggs S, Teyssedre G, Laurent C, Cakmak M, Kumar S et al (2016) Advanced polymeric dielectrics for high energy density applications. Prog Mater Sci 83:236–269

    CAS  Google Scholar 

  12. Prateek TVK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    CAS  Google Scholar 

  13. Wang Y, Yao M, Ma R, Yuan Q, Yang D, Cui B et al (2020) Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J Mater Chem A 8:884–917

    CAS  Google Scholar 

  14. Zheng T, Wu J, Xiao D, Zhu J (2018) Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater Sci 98:552–624

    CAS  Google Scholar 

  15. Hao J, Li W, Zhai J, Chen H (2019) Progress in high-strain perovskite piezoelectric ceramics. Mater Sci Eng R Rep 135:1–57

    Google Scholar 

  16. Zhou X, Qi H, Yan Z, Xue G, Luo H, Zhang D (2019) Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3-NaTaO3 Relaxor Ferroelectrics. ACS Appl Mater Interfaces 11:43107–43115

    CAS  Google Scholar 

  17. Ma W, Zhu Y, Marwat MA, Fan P, Xie B, Salamon D et al (2019) Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics. J Mater Chem C 7:281–288

    CAS  Google Scholar 

  18. He H, Lu X, Li M, Wang Y, Li Z, Lu Z et al (2020) Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3–SrTiO3 ceramics. J Mater Chem C 8:2411–2418

    CAS  Google Scholar 

  19. Wu J, Mahajan A, Riekehr L, Zhang H, Yang B, Meng N et al (2018) Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage. Nano Energy 50:723–732

    CAS  Google Scholar 

  20. Qiao X, Wu D, Zhang F, Chen B, Ren X, Liang P et al (2019) Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field. J Mater Chem C 7:10514–10520

    CAS  Google Scholar 

  21. Wu Y, Fan Y, Liu N, Peng P, Zhou M, Yan S et al (2019) Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J Mater Chem C 7:6222–6230

    CAS  Google Scholar 

  22. Wang Z, Cao M, Yao Z, Zhang Q, Song Z, Hu W et al (2014) Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J Eur Ceram Soc 34:1755–1760

    CAS  Google Scholar 

  23. Guo X, Pu Y, Wang W, Zhang L, Ji J, Shi R et al (2019) High insulation resistivity and ultralow dielectric loss in La-doped SrTiO3 colossal permittivity ceramics through defect chemistry optimization. ACS Sustain Chem Eng 7:13041–13052

    CAS  Google Scholar 

  24. Krause A, Weber WM, Pohl D, Rellinghaus B, Kersch A, Mikolajick T (2015) Investigation of band gap and permittivity of the perovskite CaTiO3 in ultrathin layers. J Phys D Appl Phys 48:415304

    Google Scholar 

  25. Zhou M, Liang R, Zhou Z, Dong X (2019) Combining high energy efficiency and fast charge-discharge capability in novel BaTiO3-based relaxor ferroelectric ceramic for energy-storage. Ceram Int 45:3582–3590

    CAS  Google Scholar 

  26. Luo B, Wang X, Tian E, Song H, Wang H, Li L (2017) Enhanced energy-storage density and high efficiency of lead-free CaTiO3-BiScO3 linear dielectric ceramics. ACS Appl Mater Interfaces 9:19963–19972

    CAS  Google Scholar 

  27. Zhang W, Xue S, Liu S, Wang J, Shen B, Zhai J (2014) Structure and dielectric properties of BaxSr1−xTiO3-based glass ceramics for energy storage. J Alloy Compd 617:740–745

    CAS  Google Scholar 

  28. Xue S, Liu S, Zhang W, Wang J, Tang L, Shen B et al (2014) Dielectric properties and charge–discharge behaviors in niobate glass ceramics for energy-storage applications. J Alloy Compd 617:418–422

    CAS  Google Scholar 

  29. Song Z, Liu H, Zhang S, Wang Z, Shi Y, Hao H et al (2014) Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J Eur Ceram Soc 34:1209–1217

    CAS  Google Scholar 

  30. Hu Q, Tian Y, Zhu Q, Bian J, Jin L, Du H et al (2020) Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 67:104264

    CAS  Google Scholar 

  31. Qi H, Zuo R (2020) Giant electrostrictive strain in (Bi0.5Na0.5)TiO3–NaNbO3 lead-free relaxor antiferroelectrics featuring temperature and frequency stability. J Mater Chem A 8:2369–2375

    CAS  Google Scholar 

  32. Zhang L, Pu Y, Chen M (2020) Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications. Ceram Int 46:98–105

    CAS  Google Scholar 

  33. Gao P, Liu Z, Zhang N, Wu H, Bokov AA, Ren W et al (2019) New antiferroelectric perovskite system with ultrahigh energy-storage performance at low electric field. Chem Mater 31:979–990

    CAS  Google Scholar 

  34. Liu N, Liang R, Zhou Z, Dong X (2018) Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field. J Mater Chem C 6:10211–10217

    CAS  Google Scholar 

  35. Chang L, Pu Y, Jing P et al (2021) Magnetic core-shell MnFe2O4@TiO2 nanoparticles decorated on reduced graphene oxide as a novel adsorbent for the removal of ciprofloxacin and Cu(II) from water. Appl Surf Sci 541:148400

    CAS  Google Scholar 

  36. Yin J, Zhang Y, Lv X, Wu J (2018) Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J Mater Chem A 6:9823–9832

    CAS  Google Scholar 

  37. Zhang L, Pu Y, Chen M, Wei T, Keipper W, Shi R et al (2020) High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J Eur Ceram Soc 40:71–77

    CAS  Google Scholar 

  38. Tian A, Zuo R, Qi H, Shi M (2020) Large energy-storage density in transition-metal oxide modified NaNbO3–Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J Mater Chem A 8:8352–8359

    CAS  Google Scholar 

  39. Huang K, Ge G, Yan F, Shen B, Zhai J (2020) Ultralow electrical hysteresis along with high energy-storage density in lead-based antiferroelectric ceramics. Adv Electron Mater 6:1901366

    CAS  Google Scholar 

  40. Wei J, Yang T, Wang H (2019) Excellent energy storage and charge-discharge performances in PbHfO3 antiferroelectric ceramics. J Eur Ceram Soc 39:624–630

    CAS  Google Scholar 

  41. Wang H, Liu Y, Yang T, Zhang S (2019) Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv Func Mater 29:1807321

    Google Scholar 

  42. Luo N, Han K, Zhuo F, Xu C, Zhang G, Liu L et al (2019) Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J Mater Chem A 7:14118–14128

    CAS  Google Scholar 

  43. Liu X, Li Y, Hao X (2019) Ultra-high energy-storage density and fast discharge speed of(Pb0.98−xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via tape-casting method. J Mater Chem A 7:11858–11866

    CAS  Google Scholar 

  44. Xu R, Tian J, Zhu Q, Zhao T, Feng Y, Wei X et al (2017) Effects of La-induced phase transition on energy storage and discharge properties of PLZST ferroelectric/antiferroelectric ceramics. Ceram Int 43:13918–13923

    CAS  Google Scholar 

  45. Xu C, Liu Z, Chen X, Yan S, Cao F, Dong X et al (2017) Pulse discharge properties of PLZST antiferroelectric ceramics compared with ferroelectric and linear dielectrics. AIP Adv 7:115108

    Google Scholar 

  46. Li F, Yang K, Liu X, Zou J, Zhai J, Shen B et al (2017) Temperature induced high charge–discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics. Scr Mater 141:15–19

    CAS  Google Scholar 

  47. Li F, Zhai J, Shen B, Liu X, Yang K, Zhang Y et al (2017) Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J Appl Phys 121:054103

    Google Scholar 

  48. Li W-B, Zhou D, Pang L-X, Xu R, Guo H-H (2017) Novel barium titanate based capacitors with high energy density and fast discharge performance. J Mater Chem A 5:19607–19612

    CAS  Google Scholar 

  49. Hu Q, Bian J, Zelenovskiy PS, Tian Y, Jin L, Wei X et al (2018) Symmetry changes during relaxation process and pulse discharge performance of the BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic. J Appl Phys 124:054101

    Google Scholar 

  50. Yao Y, Li Y, Sun N, Du J, Li X, Zhang L et al (2018) Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)-0.1NaNbO3 ceramics. Ceram Int 44:5961–5966

    CAS  Google Scholar 

  51. Zhou M, Liang R, Zhou Z, Dong X (2018) Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J Mater Chem A 6:17896–17904

    CAS  Google Scholar 

  52. Zhou M, Liang R, Zhou Z, Dong X (2018) A novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C 6:8528–8537

    CAS  Google Scholar 

  53. Zhou M, Liang R, Zhou Z, Yan S, Dong X (2018) Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability. ACS Sustain Chem Eng 6:12755–12765

    CAS  Google Scholar 

  54. Liu G, Li Y, Gao J, Li D, Yu L, Dong J et al (2020) Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics. J Alloy Compd 826:154160

    CAS  Google Scholar 

  55. Zhao P, Wang H, Wu L, Chen L, Cai Z, Li L et al (2019) High-performance relaxor ferroelectric materials for energy storage applications. Adv Energy Mater 9:1803048

    Google Scholar 

  56. Yang Z, Gao F, Du H, Jin L, Yan L, Hu Q et al (2019) Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58:768–777

    CAS  Google Scholar 

  57. Lin Y, Li D, Zhang M, Yang H (2020) (Na0.5Bi0.5)0.7Sr0.3TiO3 modified by Bi(Mg2/3Nb1/3)O3 ceramics with high energy-storage properties and an ultrafast discharge rate. J Mater Chem C 8:2258–2264

    CAS  Google Scholar 

  58. Yuan Q, Yao F-Z, Cheng S-D, Wang L, Wang Y, Mi S-B et al (2020) Bioinspired hierarchically structured all-inorganic nanocomposites with significantly improved capacitive performance. Adv Funct Mater 30:2000191

    CAS  Google Scholar 

  59. Shen J, Wang X, Yang T, Wang H, Wei J (2017) High discharge energy density and fast release speed of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics for pulsed capacitors. J Alloys Compd 721:191–198

    CAS  Google Scholar 

  60. Xu C, Liu Z, Chen X, Yan S, Cao F, Dong X et al (2016) High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics. J Appl Phys 120:074107

    Google Scholar 

  61. Xu R, Tian J, Zhu Q, Zhao T, Feng Y, Wei X et al (2017) Effects of phase transition on discharge properties of PLZST antiferroelectric ceramics. J Am Ceram Soc 100:3618–3625

    CAS  Google Scholar 

  62. Zhang L, Pu Y, Chen M, Wei T, Peng X (2020) Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem Eng J 383:123154

    CAS  Google Scholar 

  63. Sharma VK, Chopra YC, Bajwa JS (1982) Microprocessor-based defibrillator analyzer. IEEE Trans Instrum Measurement IM–31:28–31

    Google Scholar 

  64. Burn I, Smyth DM (1972) Energy Storage in Ceramic Dielectrics. J Mater Sci. 7:339–343. https://doi.org/10.1007/BF00555636

    Article  CAS  Google Scholar 

  65. Neusel C, Schneider GA (2014) Size-dependence of the dielectric breakdown strength from nano- to millimeter scale. J Mech Phys Solids 63:201–213

    Google Scholar 

  66. Pu Y, Wang W, Guo X, Shi R, Yang M, Li J (2019) Enhancing the energy storage properties of Ca0.5Sr0.5TiO3-based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects. J Mater Chem C 7:14384–14393

    CAS  Google Scholar 

  67. Du X, Pu Y, Li X, Peng X, Sun Z, Zhang J et al (2020) Optimizing the energy storage performance of K2O-Nb2O5-SiO2 based glass-ceramics with excellent temperature stability. Ceramics International 2020. https://doi.org/10.1016/j.ceramint.2020.12.021.

Download references

Acknowledgement

This work was financed by the National Natural Science Foundation of China (51872175), the International Cooperation Projects of Shaanxi Province (2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongping Pu or Min Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Chen, M., Li, X. et al. Pulse discharge characterization of perovskite dielectric ceramics. J Mater Sci 56, 9894–9902 (2021). https://doi.org/10.1007/s10853-021-05858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05858-6

Navigation