Quaternary ammonium cellulose promoted synthesis of hollow nano-sized ZSM-5 zeolite as stable catalyst for benzene alkylation with ethanol

Abstract

Catalytic alkylation of benzene with ethanol has been considered as a sustainable alternative for producing ethylbenzene/diethylbenzene. This paper reports the promoted synthesis of hollow nano-sized (20–80 nm) ZSM-5 zeolite as excellent yet durable catalyst of benzene alkylation, which is achieved by adding N-methyl-2-pyrrolidone (NMP) and quaternary ammonium cationic hydroxyethyl cellulose (JR-400) in its synthesis gel during the synthesis. It is revealed by the ESI–MS and TEM characterization that the NMP promotes the dissolution–recrystallization of the ZSM-5 and a hollow structure is generated during the process. The JR-400 as special promoter further favors the formation of ordered nano-zeolite grain and suitable microstructure, confirmed by the molecular dynamic modeling and characterization. That action corporately contributed to the hollow nano-sized ZSM-5 zeolite that provided hierarchical porous structure and mild acid centers, as evidenced by the 129Xe and 1H NMR spectra. The obtained hollow zeolite ZSM-5 then exhibits enhanced catalytic activities and selectivity for benzene alkylation. Moreover, it also displays an extremely superior stability (deactivation rate constant, −0.06%/h) in the catalysis of benzene alkylation with ethanol. This behavior is attributed to its hierarchical porous structure (namely less diffusion resistance) and mild acid centers, which is beneficial to moderate the carbon deposition and then the catalyst deactivation. Those research results urge the JR-400-promoted synthesis as a facile strategy for the hollow nano-sized ZSM-5 with enhanced catalytic performance during the benzene alkylation with the ethanol.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

References

  1. 1

    Guo S, Wu Y, Jin T et al (2020) Controllable alkylation of benzene with mixed olefins for producing C8–C15 aromatics in jet fuel. Fuel 275:117890–117897

    CAS  Google Scholar 

  2. 2

    Wang D, Wang C, Yang G, Du Y, Yang W (2019) First-principles kinetic study on benzene alkylation with ethanol vs. ethylene in H-ZSM-5. J Catal 374:1–11

    CAS  Google Scholar 

  3. 3

    Odedairo T, Al-Khattaf S (2010) Kinetic analysis of benzene ethylation over ZSM-5 based catalyst in a fluidized-bed reactor. Chem Eng J 157:204–215

    CAS  Google Scholar 

  4. 4

    Yang W, Wang Z, Sun H, Zhang B (2016) Advances in development and industrial applications of ethylbenzene processes. Chin J Catal 37:16–26

    CAS  Google Scholar 

  5. 5

    Ding C, Wang X, Guo X, Zhang S (2008) Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst. Catal Commun 9:487–493

    CAS  Google Scholar 

  6. 6

    Hodala J, Halgeri A, Shanbhag G (2014) Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene: role of crystal size and acidity. Appl Catal A-Gen 484:8–16

    CAS  Google Scholar 

  7. 7

    Ogunbadejo B, Aitani A, Čejka J, Kubů M, Al-Khattaf S (2016) The effect of alkylation route on ethyltoluene production over different structural types of zeolites. Chem Eng J 306:1071–1080

    CAS  Google Scholar 

  8. 8

    Lok CM, Van Doorn J, Aranda Almansa G (2019) Promoted ZSM-5 catalysts for the production of bio-aromatics, a review. Renew Sust Energ Rev 113:109248

    Google Scholar 

  9. 9

    Wang L, Lei H, Bu Q et al (2014) Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel 129:78–85

    CAS  Google Scholar 

  10. 10

    Zheng C, Sun X, Li L, Guan N (2012) Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate-based MCM-41 mesoporous zeolite composite carrier. Bioresource Technol 115:208–214

    CAS  Google Scholar 

  11. 11

    Bhutto AW, Harijan K, Qureshi K, Bazmi AA, Bahadori A (2015) Perspectives for the production of ethanol from lignocellulosic feedstock – a case study. J Clean Prod 95:184–193

    CAS  Google Scholar 

  12. 12

    Choopun W, Jitkarnka S (2016) Catalytic activity and stability of HZSM-5 zeolite and hierarchical uniform mesoporous MSU-SZSM-5 material during bio-ethanol dehydration. J Clean Prod 135:368–378

    CAS  Google Scholar 

  13. 13

    Guan X, Li N, Wu G, Chen J, Zhang F, Guan N (2006) Para-selectivity of modified HZSM-5 zeolites by nitridation for ethylation of ethylbenzene with ethanol. J Mol Catal A-Chem 248:220–225

    CAS  Google Scholar 

  14. 14

    Osman M, Atanda L, Hossain MM, Al-Khattaf S (2013) Kinetics modeling of disproportionation and ethylation of ethylbenzene over HZSM-5: Effects of SiO2/Al2O3 ratio. Chem Eng J 222:498–511

    CAS  Google Scholar 

  15. 15

    Wang X, Zhao D, Chu W et al (2020) N-methyl-2-pyrrolidone-induced conversion of USY into hollow Beta zeolite and its application in the alkylation of benzene with isobutylene. Microporous Mesoporous Mater 294:109944–110955

    CAS  Google Scholar 

  16. 16

    Zhao D, Wang Y, Chu W et al (2019) Direct synthesis of hollow single-crystalline zeolite beta using a small organic lactam as a recyclable hollow-directing agent. J Mater Chem A 7:10795–10804

    CAS  Google Scholar 

  17. 17

    Zhao D, Chu W, Wang Y et al (2018) Organic promoter-driven fast synthesis of zeolite beta and its acceleration mechanism. J Mater Chem A 6:24614–24624

    CAS  Google Scholar 

  18. 18

    Liu L, Wang H, Wang R et al (2014) N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Adv 4:21301–21305

    CAS  Google Scholar 

  19. 19

    Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/Urea aqueous solutions as gene carriers. Biomacromol 9:2259–2264

    CAS  Google Scholar 

  20. 20

    Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    CAS  Google Scholar 

  21. 21

    Cygan R, Liang J, Kalinichev A (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the gevelopment of a general force field. J Phys Chem B 108:1255–1266

    CAS  Google Scholar 

  22. 22

    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    CAS  Google Scholar 

  23. 23

    Nosé S (2006) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Google Scholar 

  24. 24

    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    CAS  Google Scholar 

  25. 25

    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    CAS  Google Scholar 

  26. 26

    Fischer NM, van Maaren PJ, Ditz JC, Yildirim A, van der Spoel D (2015) Properties of organic liquids when simulated with long-range lennard-jones interactions. J Chem Theory Comput 11:2938–2944

    CAS  Google Scholar 

  27. 27

    Wang D, Sun H, Liu W, Shen Z, Yang W (2019) Hierarchical ZSM-5 zeolite with radial mesopores: preparation, formation mechanism and application for benzene alkylation. Front Chem Sci Eng 14:248–257

    Google Scholar 

  28. 28

    Zhang L, Fu W, Yu Q, Tang T, Zhao Y, Li Y (2017) Effect of citric acid addition on the morphology and activity of Ni2P supported on mesoporous zeolite ZSM-5 for the hydrogenation of 4,6-DMDBT and phenanthrene. J Catal 345:295–307

    CAS  Google Scholar 

  29. 29

    Rownaghi A, Rezaei F, Stante M, Hedlund J (2012) Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Appl Catal B-Environ 119–120:56–61

    Google Scholar 

  30. 30

    Li H, Wang Y, Meng F, Chen H, Sun C, Wang S (2016) Direct synthesis of high-silica nano ZSM-5 aggregates with controllable mesoporosity and enhanced catalytic properties. RSC Adv 6:99129–99138

    CAS  Google Scholar 

  31. 31

    Wang Y, Cao J, Ren X et al (2020) Synthesis of ZSM-5 using different silicon and aluminum sources nature for catalytic conversion of lignite pyrolysis volatiles to light aromatics. Fuel 268:117286–117293

    CAS  Google Scholar 

  32. 32

    Zhang L, Liu S, Xie S, Xu L (2012) Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite. Microporous Mesoporous Mater 147:117–126

    Google Scholar 

  33. 33

    Li H, Wang Y, Meng F et al (2017) Controllable fabrication of single-crystalline, ultrafine and high-silica hierarchical ZSM-5 aggregates via solid-like state conversion. RSC Adv 7:25605–25620

    CAS  Google Scholar 

  34. 34

    Liu X, Wang T, Wang C et al (2020) A chemical approach for ultrafast synthesis of SAPO-n molecular sieves. Chem Eng J 381:122759–122757

    CAS  Google Scholar 

  35. 35

    Springuel-Huet M, Nosov A, Fraissard J (1996) 129Xe NMR study of the bed resistance to molecular transport in assemblages of zeolite crystallites. J Phys Chem 100:7200–7203

    CAS  Google Scholar 

  36. 36

    Liu Y, Zhang W, Liu Z et al (2008) Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR. J Phys Chem C 112:5375–15381

    Google Scholar 

  37. 37

    He T, Liu X, Xu S et al (2016) Role of 12-Ring channels of mordenite in DME carbonylation investigated by solid-state NMR. J Phys Chem C 120:22526–22531

    CAS  Google Scholar 

  38. 38

    Zhao Z, Li X, Li S et al (2019) Structural investigation of interlayer-expanded zeolite by hyperpolarized 129Xe and 1H NMR spectroscopy. Microporous Mesoporous Mater 288:109555–109560

    CAS  Google Scholar 

  39. 39

    Lim IH, Schrader W, Schüth F (2013) The formation of zeolites from solution – analysis by mass spectrometry. Microporous Mesoporous Mater 166:20–36

    CAS  Google Scholar 

  40. 40

    Bourgeat-Lami E, Di Renzo F, Fajula F, Mutin PH, Des Courieres T (1992) Mechanism of the thermal decomposition of tetraethylammonium in zeolite beta. J Phy Chem 96:3807–3811

    CAS  Google Scholar 

  41. 41

    Castro M, Haouas M, Lim I et al (2016) Zeolite Beta formation from clear sols: silicate speciation, oarticle formation and crystallization monitored by complementary analysis methods. Chem-Eur J 22:15307–15319

    CAS  Google Scholar 

  42. 42

    Liu X, Song H, Sun W et al (2020) Strong nano size effect of titanium silicalite (TS-1) zeolites for electrorheological fluid. Chem Eng J 384:123267–123281

    CAS  Google Scholar 

  43. 43

    Castro M, Haouas M, Taulelle F et al (2014) Multidiagnostic analysis of silicate speciation in clear solutions/sols for zeolite synthesis. Microporous Mesoporous Mater 189:158–162

    CAS  Google Scholar 

  44. 44

    Liu X, Xie B, Zhang B, Ma L (2018) Preparation of hierarchical TS-1 zeolite membrane via a dissolution–recrystallization process. J Mater Sci 53:1851–1861 https://doi.org/10.1007/s10853-017-1641-1

    CAS  Article  Google Scholar 

  45. 45

    Gao X, Zhou Y, Gu J, Li L, Li Y (2019) Facile synthesis of hierarchical manganese-containing TS-1 and its application on the oxidation of cyclohexanone with molecular oxygen. Microporous Mesoporous Mater 275:263–269

    CAS  Google Scholar 

  46. 46

    Liu X, Ge P, Zhang Y et al (2018) Highly oriented thin membrane fabrication with hierarchically porous zeolite seed. Cryst Growth Des 18:4544–4554

    CAS  Google Scholar 

  47. 47

    Liu X, Zhang Y, Wang Z et al (2018) A catalytic hydrocracking approach for zeolite detemplation at mild condition. Chem Eng J 346:600–605

    CAS  Google Scholar 

  48. 48

    Zhang L, Zhang H, Chen Z, Liu S, Ren J (2019) Effect of framework Al siting on catalytic performance in methanol to aromatics over ZSM-5 zeolites. J Fuel Chem Technol 47:1468–1475

    Google Scholar 

  49. 49

    Gackowski M, Podobiński J, Hunger M (2019) Evidence for a strong polarization of n-hexane in zeolite H-ZSM-5 by FT-IR and solid-state NMR spectroscopy. Microporous Mesoporous Mater 273:67–72

    CAS  Google Scholar 

  50. 50

    Heeribout L, Dorémieux-Morin C, Nogier JP, Vincent R, Fraissard J (1998) Study of high-silica H-ZSM-5 acidity by 1H NMR techniques using water as base. Microporous Mesoporous Mater 24:101–112

    CAS  Google Scholar 

  51. 51

    Saxena SK, Viswanadham N (2016) Hierarchically nano porous nano crystalline ZSM-5 for improved alkylation of benzene with bio-ethanol. Appl Mater Today 5:25–32

    Google Scholar 

  52. 52

    Yang C, Xie S, Liu H et al (2018) IM-5 zeolite treated with mixed solution of NaOH and TPABr: Characterization and application for alkylation of benzene with ethanol. Catal Lett 148:2030–2041

    CAS  Google Scholar 

  53. 53

    Xin W, Yang C, Liu S, Xu L (2018) Gas alkylation of ethanol with benzene over ZSM-11 zeolite catalysts synthesized via different preparation methods. Acta Perolei Sinica 34:1233–1239

    CAS  Google Scholar 

  54. 54

    Saenluang K, Imyen T, Wannapakdee W et al (2020) Hierarchical nanospherical ZSM-5 nanosheets with uniform Al distribution for alkylation of benzene with ethanol. ACS Appl Nano Mater 3:3252–3263

    CAS  Google Scholar 

  55. 55

    Hodala J, Bhat Y, Halgeri A, Shanbhag G (2015) Shape-selective synthesis of para-diethylbenzene over pore-engineered ZSM-5: a kinetic study. Chem Eng Sci 138:396–402

    CAS  Google Scholar 

  56. 56

    Nie X, Liu X, Song C, Guo X (2009) Theoretical study on alkylation of benzene with ethanol and ethylene over H-ZSM-5. Chin J Catal 30:453–458

    CAS  Google Scholar 

  57. 57

    Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous Mesoporous Mater 203:41–53

    CAS  Google Scholar 

  58. 58

    Jin Y, Zhang L, Liu J et al (2017) Mesopore modification of beta zeolites by sequential alkali and acid treatments: Composition-dependent T-atoms removal behavior back donating to hierarchical structure and catalytic activity in benzene alkylation. Microporous Mesoporous Mater 248:7–17

    CAS  Google Scholar 

  59. 59

    Lu P, Fei Z, Li L et al (2013) Effects of controlled SiO2 deposition and phosphorus and nickel doping on surface acidity and diffusivity of medium and small sized HZSM-5 for para-selective alkylation of toluene by methanol. Appl Catal A-Gen 453:302–309

    CAS  Google Scholar 

  60. 60

    Zhang H, Hu Z, Huang L et al (2015) Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: effects of mesoporosity and acidity. ACS Catal 5:2548–2558

    CAS  Google Scholar 

  61. 61

    Liu F, Wang X, Xu F et al (2017) Fabrication and characterization of composites comprising (CHA)SAPO-34 with (MFI)ZSM-5 topologies and their catalytic performances on MTO reaction. Microporous Mesoporous Mater 252:197–206

    CAS  Google Scholar 

  62. 62

    Yan T, Yang L, Dai W et al (2018) On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion. J Catal 367:7–15

    CAS  Google Scholar 

  63. 63

    Todorova T, Shestakova P, Petrova T, Popova M, Lazarova H, Kalvachev Y (2020) Fluoride etching of AlZSM-5 and GaZSM-5 zeolites. J Mater Sci 55:13799–13814 https://doi.org/10.1007/s10853-020-05030-6

    CAS  Article  Google Scholar 

  64. 64

    Kalvachev Y, Jaber M, Mavrodinova V, Dimitrov L, Nihtianova D, Valtchev V (2013) Seeds-induced fluoride media synthesis of nanosized zeolite beta crystals. Microporous Mesoporous Mater 177:127–134

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yangfan Project of Guangdong Province, China [grant number, 2015YT02C089], the Taishan Scholar Foundation of Shandong Province (tsqn201812074) and the Natural Science Foundation of Shandong Province (ZR2020MB113).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xuguang Liu or Zhiyi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Stephen Eichhorn.

Supplementary information

10853_2021_5856_MOESM1_ESM.docx

Supplementary file1 (DOCX 887kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nie, P., Liu, X., Zhang, P. et al. Quaternary ammonium cellulose promoted synthesis of hollow nano-sized ZSM-5 zeolite as stable catalyst for benzene alkylation with ethanol. J Mater Sci 56, 8461–8478 (2021). https://doi.org/10.1007/s10853-021-05856-8

Download citation