Facile in situ growth of ZIF-8 films onto aluminum for applications requiring fast thermal response

Abstract

In this work, we report a simple approach for the synthesis of highly crystalline films of ZIF-8 directly grown onto non-functionalized common aluminum substrates through an easy, short in situ solvothermal methodology. Through several techniques such as XRD, SEM, EDS, AFM and XPS, it is shown that a simple, short pretreatment of the substrate with a dilute hydrochloric acid solution promotes the subsequent solvothermal nucleation and growth of continuous, homogeneous micrometer thickness and very adherent ZIF-8 films. The robustness and usefulness of ZIF-8/aluminum are shown by testing it in the highly exothermic catalytic reaction of carbon monoxide oxidation, in which it presented a high performance and durability, preserving the metal–organic framework integrity during reaction time. This behavior demonstrates that the novel ZIF-8/aluminum systems have a high potential for use in applications at moderate temperatures demanding a fast heat exchange rate between the metal–organic framework (MOF) film and the substrate.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. 1

    Phan A, Doonan C, Uribe-Romo F, Knobler C, O’Keeffe M, Yaghi O (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67

    CAS  Article  Google Scholar 

  2. 2

    Park K, Ni Z, Coté A, Choi J, Huang R, Uribe-Romo F, Chae H, O´Keeffe M, Yagui O, (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103:10186

    CAS  Article  Google Scholar 

  3. 3

    Yao J, Wang H (2014) Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem Soc Rev 43(13):4470–4493

    CAS  Article  Google Scholar 

  4. 4

    Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y-S, Caro J (2011) Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem Mater 23:2262–2269

    CAS  Article  Google Scholar 

  5. 5

    Kwon H, Jeong H-K (2013) In Situ Synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J Am Chem Soc 135(29):10763–10768

    CAS  Article  Google Scholar 

  6. 6

    Venna S, Carreon M (2009) Highly Permeable zeolite imidazolate Framework-8 MEMBRANES for CO2/CH4 separation. J Am Chem Soc 132:76–78

    Article  Google Scholar 

  7. 7

    Betard A, Fischer R (2012) Metal-organic framework thin films: from fundamentals to applications. Chem Rev 112:1055–1083

    CAS  Article  Google Scholar 

  8. 8

    Kida K, Fujita K, Shimada T, Tanaka S, Miyake Y (2013) Layer-by-layer aqueous rapid synthesis of ZIF-8 films on a reactive surface. Dalt Trans 42(31):11128–11136

    CAS  Article  Google Scholar 

  9. 9

    Chen L-J, Luo B, Li W-S, Yang YT, Li S-S, Wang X-Z, Cui Y-J, Li H-Y, Qian G-D (2016) Growth and characterization of zeolitic imidazolate framework-8 nanocrystalline layers on microstructured surfaces for liquid crystal alignment. RSC Adv 6:7488

    CAS  Article  Google Scholar 

  10. 10

    He M, Yao J, Li L, Zhong Z, Chen F, Wang H (2013) Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method. Micropor Mesopor Mater 179:10–16

    CAS  Article  Google Scholar 

  11. 11

    Hamid M, Park S, Kim J, Lee Y, Jeong H-K (2019) In-Situ formation of Zeolitic-Imidazolate framework thin films and composites using modified polymer substrates. J Mater Chem A 7:9680–9689

    Article  Google Scholar 

  12. 12

    Dumée L, He L, Hill M, Zhu B, Duke M, Schütz J, She F, Wang H, Gray S, Hodgsona P, Kong L (2013) Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes. J Mater Chem A 1(32):9208–9214

    Article  Google Scholar 

  13. 13

    Bux H, Chmelik C, Krishna R, Caro J (2011) Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion. J Memb Sci 369(1–2):284–289

    CAS  Article  Google Scholar 

  14. 14

    Tian F, Cerro AM, Mosier AM, Wayment-Steele HK, Shine RS, Park A, Webster ER, Johnson LE, Johal MS, Benz L (2014) Surface and stability characterization of a nanoporous ZIF-8 thin film. J Phys Chem C 118(26):14449–14456

    CAS  Article  Google Scholar 

  15. 15

    Chocarro-Ruiz B, Pérez-Carvajal P, Avci C, Calvo-Lozano O, Alonso M, Maspoch D, Lechuga L (2018) A CO2 optical sensor based on self-assembled metal–organic framework nanoparticles. J Mater Chem A 6:13171

    CAS  Article  Google Scholar 

  16. 16

    Segovia G, Tuninetti J, Moya S, Picco A, Ceolín M, Azzaroni O, Rafti M (2018) Cysteamine-modified ZIF-8 colloidal building blocks: direct assembly of nanoparticulate MOF films on gold surfaces via thiol chemistry. Mat Today Chem 8:29–35

    CAS  Article  Google Scholar 

  17. 17

    Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H (2010) Surface nano-architecture of a metal-organic framework. Nat Mater 9:565

    CAS  Article  Google Scholar 

  18. 18

    Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W, De Feyter S, Falcaro P, De Vos D, Vereecken P, Ameloot R (2016) Chemical vapour deposition of zeolitic imidazolate framework thin films. Nature Mater 15:304–310

    CAS  Article  Google Scholar 

  19. 19

    Kim D-Y, Joshi B, Lee J-G, Lee J-H, Lee J-S, Hwang Y, Chang J-S, Al-Deyab S, Tan J-C, Yoon S (2016) Supersonic cold spraying for zeolitic metal–organic framework films. Chem Eng J 295:49–56

    CAS  Article  Google Scholar 

  20. 20

    Fischer D, von Mankowski A, Ranft A, Vasa S, Linser R, Mannhart J, Lotsch B (2017) ZIF-8 films prepared by femtosecond pulsed-laser deposition. Chem Mater 29:5148–5155

    CAS  Article  Google Scholar 

  21. 21

    Huang A, Liu Q, Wang N, Caro J (2014) Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel nets. J Mater Chem A 2(22):8246–8251

    CAS  Article  Google Scholar 

  22. 22

    Ma Q, Li G, Liu X, Wang Z, Song Z, Wang H (2018) Zeolitic imidazolate framework-8 film coated stainless steel meshes for highly efficient oil/water separation. Chem Commun 54:5530–5533

    CAS  Article  Google Scholar 

  23. 23

    Ji H, Hwang S, Kim K, Kim C, Jeong N (2016) Direct in Situ conversion of metals into metal−organic frameworks: a strategy for the rapid growth of mof films on metal substrates. ACS Appl Mater Interfaces 8:32414–32420

    CAS  Article  Google Scholar 

  24. 24

    Papporello R, Miró E, Zamaro J (2015) Secondary growth of ZIF-8 films onto copper-based foils. Insight into surface interactions. Micropor Mesopor Mater 211:64–72

    CAS  Article  Google Scholar 

  25. 25

    Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical properties of matter-the TPRC Data. In: Thermal Conductivity-Metallic Elements and Alloys, vol. 1, SBN 306–67021–6. IFI/Plenum, New York, Washington (1970)

  26. 26

    Boger T, Heibel AK (2005) Heat transfer in conductive monolith structures. Chem Eng Sci 60(7):1823–1835

    CAS  Article  Google Scholar 

  27. 27

    Papurello R, Fernández J, Miró E, Zamaro J (2017) Microreactor with silver-loaded metal-organic framework films for gas-phase reactions. Chem Eng J 313:1468–1476

    CAS  Article  Google Scholar 

  28. 28

    Cui B, Audu CO, Liao Y, Nguyen ST, Farha OK, Hupp JT, Grayson M (2017) Thermal conductivity of ZIF-8 thin-film under ambient gas pressure. ACS Appl Mater Interfaces 9:28139–28143

    CAS  Article  Google Scholar 

  29. 29

    Zhang J, Ramachandran PV, Gore JP, Mudawar I, Fisher TS (2005) A review of heat transfer issues in hydrogen storage technologies. J Heat Transfer 127(12):1391–1399

    CAS  Article  Google Scholar 

  30. 30

    Zhang M, Ma L, Wang L, Sun Y, Liu Y (2018) Insights into the use of metal−organic framework as high-performance anticorrosion coatings. ACS Appl Mater Interfaces 10:2259–2263

    CAS  Article  Google Scholar 

  31. 31

    Zhang M, Liu Y (2020) Enhancing the anti-corrosion performance of ZIF-8-based coatings via microstructural optimization. New J Chem 44:2941–2946

    CAS  Article  Google Scholar 

  32. 32

    Hernandez J, Choren E (1983) Thermal stability of some platinum complexes. Thermochim Acta 71(3):265–272

    CAS  Article  Google Scholar 

  33. 33

    Reddy N, Bera P, Reddy V, Sridhara N, Dey A, Anandan C, Sharma A (2015) XPS study of sputtered alumina thin films. Ceram Int 40(7):11099–11107

    Article  Google Scholar 

  34. 34

    Kaesche H (2003) Corrosion of metal. Springer-Verlag, Berlin Heidelberg, Physicochemical Principles and Current Problems

    Google Scholar 

  35. 35

    Leygraf C, Graede T (2000) Atmospheric corrosion. Inc, New York

    Google Scholar 

  36. 36

    Fernández-Bertrán J, Castellanos-Serra L, Madeira H, Reguera E (1999) Proton transfer in solid state: mechanochemical reactions of imidazole with metallic oxides. J Solid State Chem 147:561–564

    Article  Google Scholar 

  37. 37

    Teagarden DL, Radavich JF, White J, Hem SL (1981) Aluminum chlorohydrate 11: physicochemical properties. J Pharm Sci 70(7):762–764

    CAS  Article  Google Scholar 

  38. 38

    Wang P, Liu J, Liu C, Zheng B, Zou X, Jia M, Zhu G (2016) Electrochemical synthesis and catalytic properties of encapsulated metal clusters within zeolitic imidazolate frameworks. Chem Eur J 122:16613–16620

    Article  Google Scholar 

  39. 39

    Jiang H, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) Au@ZIF-8: CO Oxidation over gold nanoparticles deposited to metal−organic framework. J Am Chem Soc 131:11302–11303

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Thanks are given to Agencia Nacional de Promoción Científica y Tecnológica of Argentina (Project PICT 2241) and Universidad Nacional del Litoral (Project CAI+D 0071) for their financial support. Special thanks to ANPCyT for the purchase of the UHV Multi Analysis System (PME 8-2003) and to M. F. Mori for the XPS analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan M. Zamaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Complementary results of characterization related to this article by FTIR, SEM, EDS, TGA and catalytic assay are provided.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Yaroslava Yingling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papurello, R.L., Zamaro, J.M. Facile in situ growth of ZIF-8 films onto aluminum for applications requiring fast thermal response. J Mater Sci 56, 9065–9078 (2021). https://doi.org/10.1007/s10853-021-05850-0

Download citation