Insights into the complementary behaviour of Gd doping in GO/Gd/ZnO composites as an efficient candidate towards photocatalytic degradation of indigo carmine dye

Abstract

Water pollution caused by the discharge of hazardous organic pollutants from the food, textile, leather and paper industries is becoming a task for sustainable development. Photocatalysis is considered to be an effective method for removing organic contaminants from dye wastewater. The photocatalytic activity of ZnO-based catalyst based on its ability to generate electron–hole pairs upon photoillumination is limited due to its wide bandgap. In this study, novel GO/Gd/ZnO composites with varying percentages (0.3–1%) of Gd were fabricated via a hydrothermal approach and their photocatalytic degradation processes and performance of indigo carmine (IC) dye were investigated under light irradiation. The chemical composition and morphological features of the prepared GO/Gd/ZnO composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope, energy-dispersive spectroscopy, Brunauer–Emmett–Teller, Raman and Fourier–transform infrared spectroscopy. GO/Gd/ZnO composites show much higher photocatalytic performance with complete IC dye degradation within 30 min of irradiation than bulk ZnO and GO/ZnO composite. Moreover, the optimal performance was revealed by the GO/Gd/ZnO (0.6% Gd) composite (nearly 96% degradation of IC dye). Using density functional theory, we explore the potential drop across the interface, electronic and structural properties of GO/ZnO and GO/Gd/ZnO composites. The photodegradation rate of IC dye by GO/Gd/ZnO (0.6% Gd) composite was 7.65 and 2.94-fold higher than those of bulk ZnO and GO/ZnO composite. The capture experiments revealed ˙O2 and ˙OH as the main active radicals during the photodegradation process. The theoretical and experimental findings obtained in this study indicate that GO/Gd/ZnO photocatalyst has great potential application for eliminating environmental pollutants.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

References

  1. 1

    Herrera-García S, Aguirre-Ramírez M, Torres-Pérez J (2020) Comparison between Allura Red dye discoloration by activated carbon and azo bacteria strain. Environ Sci Pollut Res Int 27:29688–29696

    Google Scholar 

  2. 2

    Oplatowska-Stachowiak M, Elliott CT (2017) Food colors: existing and emerging food safety concerns. Crit Rev Food Sci Nutr 57(3):524–548

    CAS  Google Scholar 

  3. 3

    Hodges BC, Cates EL, Kim J-H (2018) Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat Nanotechnol 13(8):642–650

    CAS  Google Scholar 

  4. 4

    Chequer FMD, Lizier TM, de Felício R, Zanoni MVB, Debonsi HM, Lopes NP, Marcos R, de Oliveira DP (2011) Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicol In Vitro 25(8):2054–2063

    CAS  Google Scholar 

  5. 5

    Chequer FMD, Lizier TM, de Felício R, Zanoni MVB, Debonsi HM, Lopes NP, de Oliveira DP (2015) The azo dye Disperse Red 13 and its oxidation and reduction products showed mutagenic potential. Toxicol In Vitro 29(7):1906–1915

    CAS  Google Scholar 

  6. 6

    Cheng XQ, Zhang C, Wang ZX, Shao L (2016) Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification. J Membr Sci 499:326–334

    CAS  Google Scholar 

  7. 7

    Ding R, Zhang P, Seredych M, Bandosz TJ (2012) Removal of antibiotics from water using sewage sludge-and waste oil sludge-derived adsorbents. Water Res 46(13):4081–4090

    CAS  Google Scholar 

  8. 8

    Cui J, Qi Y, Dong B, Mu L, Ding Q, Liu G, Jia M, Zhang F, Li C (2019) One-pot synthesis of BaMg1/3Ta2/3O3-xNy/Ta3N5 heterostructures as H2-evolving photocatalysts for construction of visible-light-driven Z-scheme overall water splitting. Appl Catal B 241:1–7

    CAS  Google Scholar 

  9. 9

    Uddin MT, Hoque ME, Chandra Bhoumick M (2020) Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Adv 10(40):23554–23565. https://doi.org/10.1039/D0RA03233F

    CAS  Article  Google Scholar 

  10. 10

    Uddin MT, Nicolas Y, Olivier C, Servant L, Toupance T, Li S, Klein A, Jaegermann W (2015) Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. Phys Chem Chem Phys 17(7):5090–5102

    CAS  Google Scholar 

  11. 11

    Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R (2015) Carbon-doped ZnO nanostructures: facile synthesis and visible light photocatalytic applications. J Phys Chem C 119(35):20544–20554

    CAS  Google Scholar 

  12. 12

    Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y (2012) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces 4(8):4024–4030

    CAS  Google Scholar 

  13. 13

    Paul R, Gayen R, Biswas S, Bhat SV, Bhunia R (2016) Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RSC Adv 6(66):61661–61672

    CAS  Google Scholar 

  14. 14

    Qian C, Yin J, Zhao J, Li X, Wang S, Bai Z, Jiao T (2020) Facile preparation and highly efficient photodegradation performances of self-assembled Artemia eggshell-ZnO nanocomposites for wastewater treatment. Colloids Surf Physicochem Eng Aspects 610:125752

    Google Scholar 

  15. 15

    Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43(15):5234–5244

    CAS  Google Scholar 

  16. 16

    Rambabu Y, Kumar U, Singhal N, Kaushal M, Jaiswal M, Jain SL, Roy SC (2019) Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes. Appl Surf Sci 485:48–55

    CAS  Google Scholar 

  17. 17

    Wang L, Li Z, Chen J, Huang Y, Zhang H, Qiu H (2019) Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite. Environ Pollut 249:801–811

    CAS  Google Scholar 

  18. 18

    Kumar KVA, Lakshminarayana B, Suryakala D, Subrahmanyam C (2020) Reduced graphene oxide supported ZnO quantum dots for visible light-induced simultaneous removal of tetracycline and hexavalent chromium. RSC Adv 10(35):20494–20503. https://doi.org/10.1039/D0RA02062A

    CAS  Article  Google Scholar 

  19. 19

    Ge L, Zhang M, Wang R, Li N, Zhang L, Liu S, Jiao T (2020) Fabrication of CS/GA/RGO/Pd composite hydrogels for highly efficient catalytic reduction of organic pollutants. RSC Adv 10(26):15091–15097. https://doi.org/10.1039/D0RA01884H

    CAS  Article  Google Scholar 

  20. 20

    Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41(2):782–796

    CAS  Google Scholar 

  21. 21

    Zhu Z, Guo F, Xu Z, Di X, Zhang Q (2020) Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite. RSC Adv 10(20):11929–11938. https://doi.org/10.1039/D0RA01741H

    CAS  Article  Google Scholar 

  22. 22

    Zeng B, Liu W, Zeng W (2019) Simple and environmentally-friendly synthesis of graphene–CdS hierarchical nanospheres and their photocatalytic performance. J Mater Sci Mater Electron 30(4):3753–3759. https://doi.org/10.1007/s10854-018-00657-3

    CAS  Article  Google Scholar 

  23. 23

    Li H, Wang P, Yi X, Yu H (2020) Edge-selectively amidated graphene for boosting H2-evolution activity of TiO2 photocatalyst. Appl Catal B 264:118504. https://doi.org/10.1016/j.apcatb.2019.118504

    CAS  Article  Google Scholar 

  24. 24

    Huang B (2017) Doping of RE ions in the 2D ZnO layered system to achieve low-dimensional upconverted persistent luminescence based on asymmetric doping in ZnO systems. Phys Chem Chem Phys 19(20):12683–12711. https://doi.org/10.1039/C7CP01623A

    CAS  Article  Google Scholar 

  25. 25

    Anandan S, Miyauchi M (2011) Ce-doped ZnO (CexZn1−xO) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Phys Chem Chem Phys 13(33):14937–14945. https://doi.org/10.1039/C1CP21514K

    CAS  Article  Google Scholar 

  26. 26

    Das T, Das BK, Parashar K, Kumar R, Choudhary HK, Anupama AV, Sahoo B, Sahoo PK, Parashar SKS (2017) Effect of Sr-doping on sinterability, morphology, structure, photocatalytic activity and AC conductivity of ZnO ceramics. J Mater Sci Mater Electron 28(18):13587–13595. https://doi.org/10.1007/s10854-017-7198-6

    CAS  Article  Google Scholar 

  27. 27

    Mahour LN, Choudhary HK, Kumar R, Anupama A, Sahoo B (2019) Structural, optical and Mössbauer spectroscopic investigations on the environment of Fe in Fe-doped ZnO (Zn1-xFexO) ceramics synthesized by solution combustion method. Ceram Int 45(18):24625–24634

    CAS  Google Scholar 

  28. 28

    Anantharamaiah P, Chandra NS, Shashanka H, Kumar R, Sahoo B (2020) Magnetic and catalytic properties of Cu-substituted SrFe12O19 synthesized by tartrate-gel method. Adv Powder Technol 31(6):2385–2393

    CAS  Google Scholar 

  29. 29

    Ray SK, Kshetri YK, Yamaguchi T, Kim T-H, Lee SW (2019) Characterization and multicolor upconversion emission properties of BaMoO4: Yb3+, Ln3+ (Ln= Tm, Ho, Tm/Ho) microcrystals. J Solid State Chem 272:87–95

    CAS  Google Scholar 

  30. 30

    Khan M, Cao W (2013) Preparation of Y-doped TiO2 by hydrothermal method and investigation of its visible light photocatalytic activity by the degradation of methylene blue. J Mol Catal A: Chem 376:71–77

    CAS  Google Scholar 

  31. 31

    Xu W, Hu Y, Jin Z, Zheng L, Zhang Z, Cao W (2018) Anti-stokes excited Er3+/Yb3+ codoped oxyfluoride glass ceramic for luminescence thermometry. J Lumin 203:401–408

    CAS  Google Scholar 

  32. 32

    Jin X, Li H, Li D, Zhang Q, Li F, Sun W, Chen Z, Li Q (2016) Role of ytterbium-erbium co-doped gadolinium molybdate (Gd2(MoO4)3: Yb/Er) nanophosphors in solar cells. Opt Express 24(18):A1276–A1287

    CAS  Google Scholar 

  33. 33

    Ren S, Fan G, Liang M, Wang Q, Zhao G (2014) Electrodeposition of hierarchical ZnO/Cu2O nanorod films for highly efficient visible-light-driven photocatalytic applications. J Appl Phys 115(6):064301

    Google Scholar 

  34. 34

    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    CAS  Article  Google Scholar 

  35. 35

    Oppong SO-B, Opoku F, Govender PP (2020) Remarkable enhancement of Eu–TiO2–GO composite for photodegradation of indigo carmine: a design method based on computational and experimental perspectives. Catal Lett. https://doi.org/10.1007/s10562-020-03386-7

    Article  Google Scholar 

  36. 36

    Oppong SO-B, Opoku F, Anku WW, Kiarii EM, Govender PP (2019) Experimental and computational design of highly active Ce–ZrO2–GO photocatalyst for eosin yellow dye degradation: the role of interface and Ce3+ ion. Catal Lett 149(6):1633–1650. https://doi.org/10.1007/s10562-019-02729-3

    CAS  Article  Google Scholar 

  37. 37

    Oppong SO-B, Opoku F, Govender PP (2019) Tuning the electronic and structural properties of Gd–TiO2–GO nanocomposites for enhancing photodegradation of IC dye: the role of Gd3+ ion. Appl Catal, B 243:106–120. https://doi.org/10.1016/j.apcatb.2018.10.031

    CAS  Article  Google Scholar 

  38. 38

    Oppong SOB, Anku WW, Opoku F, Shukla SK, Govender PP (2018) Photodegradation of eosin yellow dye in water under simulated solar light irradiation using La-doped ZnO nanostructure decorated on graphene oxide as an advanced photocatalyst. ChemistrySelect 3(4):1180–1188

    CAS  Google Scholar 

  39. 39

    Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys: Condens Matter 29(46):465901

    CAS  Google Scholar 

  40. 40

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21(39):395502

    Google Scholar 

  41. 41

    Hamann D (2013) Optimized norm-conserving Vanderbilt pseudopotentials. Phys Rev B 88(8):085117

    Google Scholar 

  42. 42

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    CAS  Google Scholar 

  43. 43

    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Google Scholar 

  44. 44

    Pack JD, Monkhorst HJ (1977) “Special points for Brillouin-zone integrations”: a reply. Phys Rev B 16(4):1748–1749. https://doi.org/10.1103/PhysRevB.16.1748

    Article  Google Scholar 

  45. 45

    Head JD, Zerner MC (1985) A Broyden–Fletcher–Goldfarb–Shanno optimization procedure for molecular geometries. Chem Phys Lett 122(3):264–270. https://doi.org/10.1016/0009-2614(85)80574-1

    CAS  Article  Google Scholar 

  46. 46

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73(2):515–562. https://doi.org/10.1103/RevModPhys.73.515

    CAS  Article  Google Scholar 

  47. 47

    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    CAS  Article  Google Scholar 

  48. 48

    Yang J, Zang C, Sun L, Zhao N, Cheng X (2011) Synthesis of graphene/Ag nanocomposite with good dispersibility and electroconductibility via solvothermal method. Mater Chem Phys 129(1):270–274. https://doi.org/10.1016/j.matchemphys.2011.04.002

    CAS  Article  Google Scholar 

  49. 49

    Zangmeister CD (2010) Preparation and evaluation of graphite oxide reduced at 220 °C. Chem Mater 22(19):5625–5629. https://doi.org/10.1021/cm102005m

    CAS  Article  Google Scholar 

  50. 50

    Madsen IC, Scarlett NV, Cranswick LM, Lwin T (2001) Outcomes of the International Union of Crystallography Commission on powder diffraction round robin on quantitative phase analysis: samples 1a to 1h. J Appl Crystallogr 34(4):409–426

    CAS  Google Scholar 

  51. 51

    Yadav A, Kumar R, Choudhary HK, Sahoo B (2018) Graphene-oxide coating for corrosion protection of iron particles in saline water. Carbon 140:477–487. https://doi.org/10.1016/j.carbon.2018.08.062

    CAS  Article  Google Scholar 

  52. 52

    Yadav A, Kumar R, Pandey UP, Sahoo B (2021) Role of oxygen functionalities of GO in corrosion protection of metallic Fe. Carbon 173:350–363. https://doi.org/10.1016/j.carbon.2020.11.029

    CAS  Article  Google Scholar 

  53. 53

    Kumar R, Kumar A, Verma N, Khopkar V, Philip R, Sahoo B (2020) Ni nanoparticles coated with nitrogen-doped carbon for optical limiting applications. ACS Appl Nano Mater 3(9):8618–8631

    CAS  Google Scholar 

  54. 54

    Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2012) Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6(11):9777–9789

    CAS  Google Scholar 

  55. 55

    Kazeminezhad I, Saadatmand S, Yousefi R (2016) Effect of transition metal elements on the structural and optical properties of ZnO nanoparticles. Bull Mater Sci 39(3):719–724

    CAS  Google Scholar 

  56. 56

    Kumar R, Sahoo B (2018) Investigation of disorder in carbon encapsulated core-shell Fe/Fe3C nanoparticles synthesized by one-step pyrolysis. Diamond Relat Mater 90:62–71. https://doi.org/10.1016/j.diamond.2018.10.003

    CAS  Article  Google Scholar 

  57. 57

    Kumar R, Kumar A, Verma N, Anupama AV, Philip R, Sahoo B (2019) Modulating non-linear optical absorption through controlled graphitization of carbon nanostructures containing Fe3C-graphite core-shell nanoparticles. Carbon 153:545–556. https://doi.org/10.1016/j.carbon.2019.07.058

    CAS  Article  Google Scholar 

  58. 58

    Kumar R, Manjunatha M, Anupama A, Ramesh K, Sahoo B (2019) Synthesis, composition and spin-dynamics of FCC and HCP phases of pyrolysis derived Co-nanoparticles embedded in amorphous carbon matrix. Ceram Int 45(16):19879–19887

    CAS  Google Scholar 

  59. 59

    Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115(23):11327–11335

    CAS  Google Scholar 

  60. 60

    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    CAS  Google Scholar 

  61. 61

    Davis EA, Mott NF (1970) Conduction in non-crystalline systems V Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 22(179):0903–0922. https://doi.org/10.1080/14786437008221061

    CAS  Article  Google Scholar 

  62. 62

    Alamdari S, Ghamsari MS, Afarideh H, Mohammadi A, Geranmayeh S, Tafreshi MJ, Ehsani MH (2019) Preparation and characterization of GO–ZnO nanocomposite for UV detection application. Opt Mater 92:243–250

    CAS  Google Scholar 

  63. 63

    Kumar R, Kumar A, Verma N, Philip R, Sahoo B (2020) Mechanistic insights into the optical limiting performance of carbonaceous nanomaterials embedded with core–shell type graphite encapsulated Co nanoparticles. Phys Chem Chem Phys 22(46):27224–27240. https://doi.org/10.1039/D0CP03328F

    CAS  Article  Google Scholar 

  64. 64

    Kumar A, Kumar R, Verma N, Anupama AV, Choudhary HK, Philip R, Sahoo B (2020) Effect of the band gap and the defect states present within band gap on the non-linear optical absorption behaviour of yttrium aluminium iron garnets. Opt Mater 108:110163. https://doi.org/10.1016/j.optmat.2020.110163

    CAS  Article  Google Scholar 

  65. 65

    Madolappa S, Anupama A, Jaschin P, Varma K, Sahoo B (2016) Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics. Bull Mater Sci 39(2):593–601

    CAS  Google Scholar 

  66. 66

    Thiruppathi M, Senthil Kumar P, Devendran P, Ramalingan C, Swaminathan M, Nagarajan ER (2018) Ce@TiO2 nanocomposites: an efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium. J Alloys Compd 735:728–734. https://doi.org/10.1016/j.jallcom.2017.11.139

    CAS  Article  Google Scholar 

  67. 67

    Sanchez-Portal D, Artacho E, Soler JM (1995) Projection of plane-wave calculations into atomic orbitals. Solid State Commun 95(10):685–690

    CAS  Google Scholar 

  68. 68

    Bhattacharjee A, Ahmaruzzaman M, Sinha T (2015) A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim Acta, Part A 136:751–760. https://doi.org/10.1016/j.saa.2014.09.092

    CAS  Article  Google Scholar 

  69. 69

    Deng Y, Tang L, Feng C, Zeng G, Wang J, Zhou Y, Liu Y, Peng B, Feng H (2018) Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J Hazard Mater 344:758–769

    CAS  Google Scholar 

  70. 70

    Wang L, Ding J, Chai Y, Liu Q, Ren J, Liu X, Dai W-L (2015) CeO2 nanorod/g-C3N4/N-rGO composite: enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media. Dalton Trans 44(24):11223–11234. https://doi.org/10.1039/C5DT01479D

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors will like to acknowledge the financial contributions from the Faculty of Science; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa; and the National Research Foundation (TTK170405225933). This work was performed using the computational facilities provided by the Centre for High Performance Computing (CHPC), Cape Town, South Africa.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Samuel Osei-Bonsu Oppong or Francis Opoku.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Chris Cornelius.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oppong, S.OB., Opoku, F., Anku, W.W. et al. Insights into the complementary behaviour of Gd doping in GO/Gd/ZnO composites as an efficient candidate towards photocatalytic degradation of indigo carmine dye. J Mater Sci 56, 8511–8527 (2021). https://doi.org/10.1007/s10853-021-05846-w

Download citation