Skip to main content
Log in

Growth of Bi2Se3/graphene heterostructures with the room temperature high carrier mobility

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Heterostructures of Bi2Se3 topological insulators were epitaxially grown on graphene by means of the physical vapor deposition at 500 °C. Micrometer-sized flakes with thickness 1 QL (quintuple layer ~ 1 nm) and films of millimeter-scale with thicknesses 2–6 QL had been grown on CVD graphene. The minimum thickness of large-scaled continuous Bi2Se3 films was found to be ~ 8 QL for the regime used. The heterostructures with a Bi2Se3 film thickness of > 10 QL had resistivity as low as 200–500 Ω/sq and a high room temperature carrier mobility ~ 1000–3400 cm2/Vs in the Bi2Se3/graphene interface channel. Moreover, the coexistence of a p-type graphene-related conductive channel, simultaneously with the n-type conductive surface channel of Bi2Se3, was observed. The improvement of the bottom Bi2Se3/graphene interface with the increase in the growth time clearly manifested itself in the increase of conductivity and carrier mobility in the grown layer. The grown Bi2Se3/G structures have lower resistivities and more than one order of magnitude higher carrier mobilities in comparison with the van der Waals Bi2Se3/graphene heterostructures created employing exfoliation of thin Bi2Se3 layers. The grown heterostructures demonstrated the properties that are perspective for new functional devices, for a variety of signal processing and logic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Geim A, Grigorieva I (2013) Van der Waals heterostructures. Nature 499:419–425. https://doi.org/10.1038/nature12385

    Article  CAS  Google Scholar 

  2. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353:aac9439. https://doi.org/10.1126/science.aac9439

    Article  CAS  Google Scholar 

  3. Zhu W, Park S, Yogeesh MN, Akinwande D (2017) Advancements in 2D flexible nanoelectronics: from material perspectives to RF applications. Flex Print Electron 2:043001. https://doi.org/10.1088/2058-8585/aa84a4

    Article  CAS  Google Scholar 

  4. Matsuhisa N, Chen X, Baoc Z, Someya T (2019) Materials and structural designs of stretchable conductors. Chem Soc Rev 48:2946. https://doi.org/10.1039/c8cs00814k

    Article  CAS  Google Scholar 

  5. Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu J-B, Zhu H (2017) Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl Phys Rev 4:021306. https://doi.org/10.1063/1.4983646

    Article  CAS  Google Scholar 

  6. Thanh TD, Chuong ND, Hien HV, Kshetri T, Tuan LH, Kim NH, Lee JH (2018) Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog Mat Sci 96:51–85. https://doi.org/10.1016/j.pmatsci.2018.03.007

    Article  CAS  Google Scholar 

  7. Miwa JA, Dendzik M, Grønborg SS, Bianchi M, Lauritsen JV, Hofmann P, Ulstrup S (2015) Van der Waals epitaxy of two-dimensional MoS2/graphene heterostructures in a ultra-high vacuum. ACS Nano 9:6502–6510. https://doi.org/10.1021/acsnano.5b02345

    Article  CAS  Google Scholar 

  8. Woods JM, Jung Y, Xie YJ, Liu W, Liu Y, Wang H, Cha JJ (2016) One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 10:2004–2009. https://doi.org/10.1021/acsnano.5b06126

    Article  CAS  Google Scholar 

  9. Zhang C, Li C, Yu J, Jiang S, Xu S, Yang C, Liu YJ, Gao X, Liu A, Man B (2018) SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sens Actuat B Chem 258:163–171. https://doi.org/10.1016/j.snb.2017.11.080

    Article  CAS  Google Scholar 

  10. Lewin M, Hauer B, Bornhöfft M, Jung L, Benke J, Michel A-KU, Mayer J, Wuttig M, Taubner T (2015) Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy. Appl Phys Lett 107:151902. https://doi.org/10.1063/1.4933102

    Article  CAS  Google Scholar 

  11. Tian W, Yu W, Shi J, Wang Y (2017) The property, preparation and application of topological insulators: a review. Materials 10:814. https://doi.org/10.3390/ma10070814

    Article  CAS  Google Scholar 

  12. Khokhriakov D, Cummings AW, Song K et al (2018) Tailoring emergent spin phenomena in Dirac material heterostructures. Sci Adv 4:eaat9349. https://doi.org/10.1126/sciadv.aat9349

    Article  CAS  Google Scholar 

  13. Qu D, Hor Y, Xiong J et al (2010) Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science 329:821–824. https://doi.org/10.1126/science.1189792

    Article  CAS  Google Scholar 

  14. Chiatti O, Riha C, Lawrenz D et al (2016) 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Sci Rep 6:27483. https://doi.org/10.1038/srep27483

    Article  CAS  Google Scholar 

  15. He L, Xiu F, Yu X et al (2012) Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett 12:1486–1490. https://doi.org/10.1021/nl204234j

    Article  CAS  Google Scholar 

  16. Song K, Soriano D, Cummings AW et al (2018) Spin proximity effects in graphene/topological insulator heterostructures. Nano Lett 18:2033–2039. https://doi.org/10.1021/acs.nanolett.7b05482

    Article  CAS  Google Scholar 

  17. Zhang L, Yan Y, Wu H-C et al (2016) Gate-tunable tunneling resistance in graphene/topological insulator vertical junctions. ACS Nano 10:3816–3822. https://doi.org/10.1021/acsnano.6b00659

    Article  CAS  Google Scholar 

  18. Cao W, Zhang R-X, Tang P, et al (2016) Heavy Dirac fermions in a graphene/topological insulator hetero-junction. 2D Mater 3:034006. https://doi.org/10.1088/2053-1583/3/3/034006

  19. Qiao H, Yuan J, Xu Z et al (2015) Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 9:1886–1894. https://doi.org/10.1021/nn506920z

    Article  CAS  Google Scholar 

  20. Vaklinova K, Hoyer A, Burghard M, Kern K (2016) Current-induced spin polarization in topological insulator-graphene heterostructures. Nano Lett 16:2595–2602. https://doi.org/10.1021/acs.nanolett.6b00167

    Article  CAS  Google Scholar 

  21. Kim N, Lee P, Kim Y et al (2014) Persistent topological surface state at the interface of Bi2Se3 film grown on patterned graphene. ACS Nano 8:1154–1160. https://doi.org/10.1021/nn405503k

    Article  CAS  Google Scholar 

  22. Lin Y, Dimitrakopoulos C, Farmer D et al (2010) Multicarrier transport in epitaxial multilayer graphene. Appl Phys Lett 97:112107. https://doi.org/10.1063/1.3485671

    Article  CAS  Google Scholar 

  23. Steinberg H, Gardner D, Lee Y, Jarillo-Herrero P (2010) Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett 10:5032–5036. https://doi.org/10.1021/nl1032183

    Article  Google Scholar 

  24. Ren Z, Taskin A, Sasaki S et al (2010) Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys Rev B 82:241306. https://doi.org/10.1103/PhysRevB.82.241306

    Article  CAS  Google Scholar 

  25. Lee P, Jin KH, Sung SJ et al (2015) Proximity effect induced electronic properties of graphene on Bi2Te2Se. ACS Nano 9:10861–10866. https://doi.org/10.1021/acsnano.5b03821

    Article  CAS  Google Scholar 

  26. Liu G, Rumyantsev SL, Shur MS, Balandin AA (2013) Origin of 1/f noise in graphene multilayers: surface vs. volume. Appl Phys Lett 102:093111. https://doi.org/10.1063/1.4794843

  27. Bøggild P, Mackenzie DMA, Whelan PR, et al (2017) Mapping the electrical properties of large-area graphene. 2D Mater 4:042003. https://doi.org/10.1088/2053-1583/aa8683

  28. Cultrera A, Serazio D, Zurutuza A et al (2019) Mapping the conductivity of graphene with electrical resistance tomography. Sci Rep 9:10655. https://doi.org/10.1038/s41598-019-46713-8

    Article  CAS  Google Scholar 

  29. Peng HL, Dang WH, Cao J et al (2012) Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat Chem 4:281–286. https://doi.org/10.1038/nchem.1277

    Article  CAS  Google Scholar 

  30. Min Y, Moon GD, Kim BS et al (2012) Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J Am Chem Soc 134:2872–2875. https://doi.org/10.1021/ja209991z

    Article  CAS  Google Scholar 

  31. Hong SS, Kundhikanjana W, Cha JJ et al (2010) Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett 10:3118–3122. https://doi.org/10.1021/nl101884h

    Article  CAS  Google Scholar 

  32. Zhang J, Peng ZP, Soni A et al (2011) Raman spectroscopy of few quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett 11:2407–2414. https://doi.org/10.1021/nl200773n

    Article  CAS  Google Scholar 

  33. Ryu S, Maultzsch J, Han MY et al (2011) Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 5:4123–4130. https://doi.org/10.1021/nn200799y

    Article  CAS  Google Scholar 

  34. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon Phys. Rev B 61:14095. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  35. Antonova IV, Nebogatikova NA, Kokh KA et al (2020) Electrochemically exfoliated thin Bi2Se3 films and van der Waals heterostructures Bi2Se3/graphene. Nanotechnology 31:125602. https://doi.org/10.1088/1361-6528/ab5cd5

    Article  CAS  Google Scholar 

  36. Piazza A, Giannazzo F, Buscarino G, Fisichella G, La Magna A, Roccaforte F, Cannas M, Gelardi FM, Agnello S (2015) Graphene p-type doping and stability by thermal treatments in molecular oxygen controlled atmosphere. J Phys Chem C 119:22718–22723. https://doi.org/10.1021/acs.jpcc.5b07301

    Article  CAS  Google Scholar 

  37. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21:3335–3345. https://doi.org/10.1039/C0JM02922J

    Article  CAS  Google Scholar 

  38. Xue L, Zhou P, Zhang CX, He CY, Hao GL, Sun LZ, Zhong JX (2013) First-principles study of native point defects in Bi2Se3. AIP Adv 3:052105. https://doi.org/10.1063/1.4804439

    Article  CAS  Google Scholar 

  39. Chae J, Kang S-H, Park SH et al (2019) Closing the surface bandgap in thin Bi2Se3/graphene heterostructures. ACS Nano 13:3931–3939. https://doi.org/10.1021/acsnano.8b07012

    Article  CAS  Google Scholar 

  40. Grassi R, Low T, Gnudi A, Baccarani G (2013) Contact-induced negative differential resistance in short-channel graphene FETs IEEE Trans. Electron Devices 60:140–146. https://doi.org/10.1109/TED.2012.2228868

    Article  Google Scholar 

  41. Tran PX (2018) Modulation of negative differential resistance in graphene field-effect transistors by tuning the contact resistances. J Electron Mater 47:5905–5912. https://doi.org/10.1007/s11664-018-6480-6

    Article  CAS  Google Scholar 

  42. Sacépé B, Oostinga JB, Li J et al (2011) Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nat Commun 2:575. https://doi.org/10.1038/ncomms1586

    Article  CAS  Google Scholar 

  43. Wang S, Li Y, Ng A, Hu Q, Zhou Q, Li X, Liu H (2020) 2D Bi2Se3 van der Waals epitaxy on mica for optoelectronics applications. Nanomaterials 10:1653. https://doi.org/10.3390/nano10091653

    Article  CAS  Google Scholar 

  44. Li HD, Wang ZY, Kan X, Guo X, He HT, Wang Z, Wang JN, Wong TL, Wang N, Xie MH (2010) The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator. New J Phys 12:103038. https://doi.org/10.1088/1367-2630/12/10/103038

    Article  CAS  Google Scholar 

  45. Kamboj VS, Singha A, Ferrusb T, Beerea HE, Duffyc LB, Hesjedalc T, Barnesa CHW, Ritchie DA (2017) Probing the topological surface state in Bi2Se3 thin films using temperature-dependent terahertz spectroscopy. ACS Photonics 4:2711–2718. https://doi.org/10.1021/acsphotonics.7b00492

    Article  CAS  Google Scholar 

  46. Brahlek M, Kim YS, Bansal N, Edrey E, Oh S (2011) Surface versus bulk state in topological insulator Bi2Se3 under environmental disorder. Appl Phys Lett 99:012109. https://doi.org/10.1063/1.3607484

    Article  CAS  Google Scholar 

  47. Bianchi M, Guan D, Bao S et al (2010) Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3. Nat Commun 1:128. https://doi.org/10.1038/ncomms1131

    Article  CAS  Google Scholar 

  48. Zhang L, Lin B-C, Wu Y-F et al (2017) Electronic coupling between graphene and topological insulator induced anomalous magnetotransport properties. ACS Nano 11:6277–6285. https://doi.org/10.1021/acsnano.7b02494

    Article  CAS  Google Scholar 

  49. Dang W, Peng H, Li H et al (2010) Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett 10:2870–2876. https://doi.org/10.1021/nl100938e

    Article  CAS  Google Scholar 

  50. Zhang C, Liu M, Man BY et al (2014) Facile fabrication of graphene-topological insulator Bi2Se3 hybrid Dirac materials via chemical vapor deposition in Se-rich conditions. Cryst Eng Commun 16:8941–8945. https://doi.org/10.1039/C4CE01269K

    Article  CAS  Google Scholar 

  51. Suna Z, Mana B, Yanga C et al (2016) Selenium-assisted controlled growth of graphene–Bi2Se3 nanoplates hybrid Dirac materials by chemical vapor deposition. Appl Surf Sci 365:357–363. https://doi.org/10.1016/j.apsusc.2015.12.212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RFBR Grant Nos. 18-29-12094 and 19-29-12061, the RSF Grant No. 20-42-08004 in the part of graphene synthesis, and state assignment of IGM SB RAS, ISP SB RAS and FSRG-2020-0017. The Raman spectra were registered using the equipment of the Center of collective usage “VTAN” in the ATRC department of NSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Antonova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, I.V., Nebogatikova, N.A., Stepina, N.P. et al. Growth of Bi2Se3/graphene heterostructures with the room temperature high carrier mobility. J Mater Sci 56, 9330–9343 (2021). https://doi.org/10.1007/s10853-021-05836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05836-y

Navigation