Low-bandgap conjugated polymers with photocurrent response over 1000 nm


Low-bandgap conjugated polymers with photocurrent response to near-infrared (NIR) wavelength are the basis of optoelectronic technologies such as semitransparent organic photovoltaics (STOPVs), NIR polymer photodetectors (PPDs), ambipolar field-effect transistors (FETs), photoacoustic (PA) imaging and photothermal therapy (PTT). Compared with inorganic-based photodetectors, PPDs, based on low-bandgap conjugated polymers with the chemical structures easy to be tuned, can achieve a wide range of spectral responses. On the other hand, this kind of polymers can enhance the short-circuit current (JSC) in TOPV by extending the absorption spectrum range. In this review, our focus will be on the development of low-bandgap conjugated polymers extending over 1000 nm and the performance of PPDs or OPVs. The perspective article summarizes the design strategy of such polymers, the derivation process of the useful heterocycles, absorption, bandgap, and energy levels. Thereafter, we will draw attention to the challenges and the possible research direction in the future to provide readers with a deeper understanding of the design of NIR polymers.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17


  1. 1

    Ying L, Huang F, Bazan GC (2017) Regioregular narrow-bandgap-conjugated polymers for plastic electronics. Nat Commun 8:14047. https://doi.org/10.1038/ncomms14047

    CAS  Article  Google Scholar 

  2. 2

    Zhou H, Yang L, You W (2012) Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45:607–632. https://doi.org/10.1021/ma201648t

    CAS  Article  Google Scholar 

  3. 3

    Xie B, Chen Z, Ying L et al (2020) Near-infrared organic photoelectric materials for light-harvesting systems: Organic photovoltaics and organic photodiodes. InfoMat 2:57–91. https://doi.org/10.1002/inf2.12063

    CAS  Article  Google Scholar 

  4. 4

    Li Y, Cai Z, Liu S et al (2020) Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat Commun 11:1255. https://doi.org/10.1038/s41467-020-15095-1

    CAS  Article  Google Scholar 

  5. 5

    Wang B, Wang M, Mikhailovsky A et al (2017) A membrane-intercalating conjugated oligoelectrolyte with high-efficiency photodynamic antimicrobial activity. Angew Chem Int Edit 56:5031–5034. https://doi.org/10.1002/anie.201701146

    CAS  Article  Google Scholar 

  6. 6

    Guo X, Facchetti A, Marks TJ (2014) Imide- and amide-functionalized polymer semiconductors. Chem Rev 114:8943–9021. https://doi.org/10.1021/cr500225d

    CAS  Article  Google Scholar 

  7. 7

    Chen C-C, Dou L, Zhu R et al (2012) Visibly transparent polymer solar cells produced by solution processing. ACS Nano 6:7185–7190. https://doi.org/10.1021/nn3029327

    CAS  Article  Google Scholar 

  8. 8

    Lan Z, Lei Y, Chan WKE et al (2020) Near-infrared and visible light dual-mode organic photodetectors. Science advances 6: eaaw8065. https://doi.org/10.1126/sciadv.aaw8065

  9. 9

    Feng K, Huang J, Zhang X et al (2020) High-performance all-polymer solar cells enabled by n-Type polymers with an ultranarrow bandgap down to 1.28 eV. Adv Mater 32:2001476. https://doi.org/10.1002/adma.202001476

  10. 10

    Xie B, Xie R, Zhang K et al (2020) Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat Commun 11:2871. https://doi.org/10.1038/s41467-020-16675-x

    CAS  Article  Google Scholar 

  11. 11

    Yin C, Lu X, Fan Q et al Organic semiconducting nanomaterials-assisted phototheranostics in near-infrared-II biological window. View: 20200070. https://doi.org/10.1002/viw.20200070

  12. 12

    Li C, Chen G, Zhang Y et al (2020) Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J Am Chem Soc 142:14789–14804. https://doi.org/10.1021/jacs.0c07022

    CAS  Article  Google Scholar 

  13. 13

    Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010. https://doi.org/10.1038/s41551-016-0010

    CAS  Article  Google Scholar 

  14. 14

    Wang B, Queenan BN, Wang S et al (2019) Precisely defined conjugated oligoelectrolytes for biosensing and therapeutics. Adv Mater 31:1806701. https://doi.org/10.1002/adma.201806701

    CAS  Article  Google Scholar 

  15. 15

    Li X, Bai H, Yang Y et al (2019) Supramolecular antibacterial materials for combatting antibiotic resistance. Adv Mater 31:1805092. https://doi.org/10.1002/adma.201805092

    CAS  Article  Google Scholar 

  16. 16

    Shi H, Xia R, Sun C et al (2017) Synergic interface and optical engineering for high-performance semitransparent polymer solar cells. Adv Energy Mater 7:1701121. https://doi.org/10.1002/aenm.201701121

    CAS  Article  Google Scholar 

  17. 17

    Dou L, Liu Y, Hong Z et al (2015) Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev 115:12633–12665. https://doi.org/10.1021/acs.chemrev.5b00165

    CAS  Article  Google Scholar 

  18. 18

    Wang C, Zhang X, Hu W (2020) Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem Soc Rev 49:653–670. https://doi.org/10.1039/C9CS00431A

    CAS  Article  Google Scholar 

  19. 19

    Chow PCY, Someya T (2020) Organic photodetectors for next-generation wearable electronics. Adv Mater 32:1902045. https://doi.org/10.1002/adma.201902045

    CAS  Article  Google Scholar 

  20. 20

    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723. https://doi.org/10.1063/1.1534621

    CAS  Article  Google Scholar 

  21. 21

    Wu Z, Zhai Y, Kim H et al (2018) Emerging design and characterization guidelines for polymer-based infrared photodetectors. Acc Chem Res 51:3144–3153. https://doi.org/10.1021/acs.accounts.8b00446

    CAS  Article  Google Scholar 

  22. 22

    Xia Y, Aguirre LE, Xu X et al (2020) All-polymer high-performance photodetector through lamination. Adv Electron Mater 6:1901017. https://doi.org/10.1002/aelm.201901017

    CAS  Article  Google Scholar 

  23. 23

    Xia Y, Xu X, Aguirre LE et al (2018) Semitransparent all-polymer solar cells through lamination. J Mater Chem A 6:21186–21192. https://doi.org/10.1039/C8TA07992G

    CAS  Article  Google Scholar 

  24. 24

    Xu X, Zhou X, Zhou K et al (2018) Large-area, semitransparent, and flexible all-polymer photodetectors. Adv Funct Mater 28:1805570. https://doi.org/10.1002/adfm.201805570

    CAS  Article  Google Scholar 

  25. 25

    Liu S, Zhou X, Zhang H et al (2019) Molecular motion in aggregates: manipulating TICT for boosting photothermal theranostics. J Am Chem Soc 141:5359–5368. https://doi.org/10.1021/jacs.8b13889

    CAS  Article  Google Scholar 

  26. 26

    Zha M, Lin X, Ni J-S et al An ester-substituted semiconducting polymer with efficient nonradiative decay enhances NIR-II photoacoustic performance for monitoring of tumor growth. Angew Chem Int Edit 59:23268. https://doi.org/10.1002/anie.202010228

  27. 27

    Liu Y, Bhattarai P, Dai Z et al (2019) Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48:2053–2108. https://doi.org/10.1039/C8CS00618K

    CAS  Article  Google Scholar 

  28. 28

    Sun T, Dou J-H, Liu S et al (2018) Second near-infrared conjugated polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Appl Mater Interfaces 10:7919–7926. https://doi.org/10.1021/acsami.8b01458

    CAS  Article  Google Scholar 

  29. 29

    Jiang Y, Upputuri PK, Xie C et al (2019) Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv Mater 31:1808166. https://doi.org/10.1002/adma.201808166

    CAS  Article  Google Scholar 

  30. 30

    Guo B, Sheng Z, Hu D et al (2018) Through Scalp and Skull NIR-II Photothermal Therapy of Deep Orthotopic Brain Tumors with Precise Photoacoustic Imaging Guidance. Adv Mater 30:1802591. https://doi.org/10.1002/adma.201802591

    CAS  Article  Google Scholar 

  31. 31

    Lyu Y, Li J, Pu K (2019) Second Near-Infrared Absorbing Agents for Photoacoustic Imaging and Photothermal Therapy. Small Methods 3:1900553. https://doi.org/10.1002/smtd.201900553

    CAS  Article  Google Scholar 

  32. 32

    Cao Y, Dou J-H, Zhao N-j et al (2017) Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem Mater 29:718–725. https://doi.org/10.1021/acs.chemmater.6b04405

    CAS  Article  Google Scholar 

  33. 33

    Li L, Pang X, Liu G (2018) Near-infrared light-triggered polymeric nanomicelles for cancer therapy and imaging. ACS Biomater Sci Eng 4:1928–1941. https://doi.org/10.1021/acsbiomaterials.7b00648

    CAS  Article  Google Scholar 

  34. 34

    Liu Y, Liu J, Chen D et al (2019) Quinoxaline-based semiconducting polymer dots for in vivo NIR-II fluorescence imaging. macromolecules 52:5735–5740. https://doi.org/10.1021/acs.macromol.9b01142

    CAS  Article  Google Scholar 

  35. 35

    Zhang W, Huang T, Li J et al (2019) Facial control intramolecular charge transfer of quinoid conjugated polymers for efficient in vivo NIR-II imaging. ACS Appl Mater Interfaces 11:16311–16319. https://doi.org/10.1021/acsami.9b02597

    CAS  Article  Google Scholar 

  36. 36

    Jiang Y, Pu K (2018) Multimodal biophotonics of semiconducting polymer nanoparticles. Acc Chem Res 51:1840–1849. https://doi.org/10.1021/acs.accounts.8b00242

    CAS  Article  Google Scholar 

  37. 37

    Tanaka S, Yamashita Y (1995) Syntheses of narrow band gap heterocyclic copolymers of aromatic-donor and quinonoid-acceptor units. Synth Met 69:599–600. https://doi.org/10.1016/0379-6779(94)02587-O

    CAS  Article  Google Scholar 

  38. 38

    Tanaka S, Yamashita Y (1993) Synthesis of a narrow band gap heterocyclic polymer: Poly-4,6-di(2-thienyl)thieno[3,4-c][1,2,5]thiadiazole. Synth Met 55:1251–1254. https://doi.org/10.1016/0379-6779(93)90233-M

    CAS  Article  Google Scholar 

  39. 39

    Karikomi M, Kitamura C, Tanaka S et al (1995) New narrow-bandgap polymer composed of benzobis(1,2,5-thiadiazole) and thiophenes. J Am Chem Soc 117:6791–6792. https://doi.org/10.1021/ja00130a024

    CAS  Article  Google Scholar 

  40. 40

    Tanaka S, Yamashita Y (1997) A novel monomer candidate for intrinsically conductive organic polymers based on nonclassical thiophene. Synth Met 84:229–230. https://doi.org/10.1016/S0379-6779(97)80726-6

    CAS  Article  Google Scholar 

  41. 41

    K Lee, GA Sotzing (2001) Poly(thieno[3,4-b]thiophene). A new stable low band gap conducting polymer. Macromolecules 34: 5746–5747. https://doi.org/10.1021/ma0106245

    CAS  Article  Google Scholar 

  42. 42

    Yao Y, Liang Y, Shrotriya V et al (2007) Plastic Near-Infrared Photodetectors Utilizing Low Band Gap Polymer. Adv Mater 19:3979. https://doi.org/10.1002/adma.200602670

    CAS  Article  Google Scholar 

  43. 43

    Zhou H, Yang L, Stoneking S et al (2010) A weak donor−strong acceptor strategy to design ideal polymers for organic solar cells. ACS Appl Mater Interfaces 2:1377–1383. https://doi.org/10.1021/am1000344

    CAS  Article  Google Scholar 

  44. 44

    Zhou E, Hashimoto K, Tajima K (2013) Low band gap polymers for photovoltaic device with photocurrent response wavelengths over 1000nm. Polymer 54:6501–6509. https://doi.org/10.1016/j.polymer.2013.09.058

    CAS  Article  Google Scholar 

  45. 45

    G Yu, J Gao, JC Hummelen et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791. https://doi.org/10.1126/science.270.5243.1789

    CAS  Article  Google Scholar 

  46. 46

    Hou JH, Chen HY, Zhang SQ et al (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131:15586–15587. https://doi.org/10.1021/ja9064975

    CAS  Article  Google Scholar 

  47. 47

    Hou J, Park M-H, Zhang S et al (2008) Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b′]dithiophene. Macromolecules 41:6012–6018. https://doi.org/10.1021/ma800820r

    CAS  Article  Google Scholar 

  48. 48

    Nielsen CB, Schroeder BC, Hadipour A et al (2011) A benzotrithiophene-based low band gap polymer for polymer solar cells with high open-circuit voltage. J Mater Chem 21:17642–17645. https://doi.org/10.1039/C1JM13393D

    CAS  Article  Google Scholar 

  49. 49

    Han J, Qi J, Zheng X et al (2017) Low-bandgap donor-acceptor polymers for photodetectors with photoresponsivity from 300 nm to 1600 nm. J Mater Chem C 5:159–165. https://doi.org/10.1039/c6tc05031j

    CAS  Article  Google Scholar 

  50. 50

    Svensson M, Zhang F, Veenstra SC et al (2003) High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater 15:988–991. https://doi.org/10.1002/adma.200304150

    CAS  Article  Google Scholar 

  51. 51

    Wang E, Wang L, Lan L et al (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett. https://doi.org/10.1063/1.2836266

    Article  Google Scholar 

  52. 52

    Blouin N, Michaud A, Leclerc M (2007) A low-bandgap poly(2,7-Carbazole) derivative for use in high-performance solar cells. Adv Mater 19:2295–2300. https://doi.org/10.1002/adma.200602496

    CAS  Article  Google Scholar 

  53. 53

    Osaka I, McCullough RD (2008) Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res 41:1202–1214. https://doi.org/10.1021/ar800130s

    CAS  Article  Google Scholar 

  54. 54

    Mühlbacher D, Scharber M, Morana M et al (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18:2884–2889. https://doi.org/10.1002/adma.200600160

    Article  Google Scholar 

  55. 55

    Liao L, Dai L, Smith A et al (2007) Photovoltaic-active dithienosilole-containing polymers. Macromolecules 40:9406–9412. https://doi.org/10.1021/ma071825x

    CAS  Article  Google Scholar 

  56. 56

    Yue W, Zhao Y, Shao S et al (2009) Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. J Mater Chem 19:2199–2206. https://doi.org/10.1039/B818885H

    CAS  Article  Google Scholar 

  57. 57

    Fei Z, Kim JS, Smith J et al (2011) A low band gap co-polymer of dithienogermole and 2,1,3-benzothiadiazole by Suzuki polycondensation and its application in transistor and photovoltaic cells. J Mater Chem 21:16257–16263. https://doi.org/10.1039/C1JM13628C

    CAS  Article  Google Scholar 

  58. 58

    Chen M-H, Hou J, Hong Z et al (2009) Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Adv Mater 21:4238–4242. https://doi.org/10.1002/adma.200900510

    CAS  Article  Google Scholar 

  59. 59

    Fan J, Yuen JD, Wang M et al (2012) High-performance ambipolar transistors and inverters from an ultralow bandgap polymer. Adv Mater 24:2186–2190. https://doi.org/10.1002/adma.201103836

    CAS  Article  Google Scholar 

  60. 60

    Wang X, Perzon E, Oswald F et al (2005) Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-derivative-based solar cells. Adv Funct Mater 15:1665–1670. https://doi.org/10.1002/adfm.200500114

    CAS  Article  Google Scholar 

  61. 61

    Y Dong, WZ Cai, M Wang et al (2013) [1,2,5]Thiadiazolo[3,4-f]benzotriazole based narrow band gap conjugated polymers with photocurrent response up to 1.1 mu m. Org Electron 14:2459–2467. https://doi.org/10.1016/j.orgel.2013.06.002

    CAS  Article  Google Scholar 

  62. 62

    Hou J, Chen TL, Zhang S et al (2009) Poly[4,4-bis(2-ethylhexyl)cyclopenta[2,1-b;3,4-b′]dithiophene-2,6-diyl-alt-2,1,3- benzoselenadiazole-4,7-diyl], a new low band gap polymer in polymer solar cells. J Phys Chem C 113:1601–1605. https://doi.org/10.1021/jp808255b

    CAS  Article  Google Scholar 

  63. 63

    Kim J-H, Shin SA, Park JB et al (2014) Fluorinated benzoselenadiazole-based low-band-gap polymers for high efficiency inverted single and tandem organic photovoltaic cells. Macromolecules 47:1613–1622. https://doi.org/10.1021/ma4026493

    CAS  Article  Google Scholar 

  64. 64

    Zhou H, Yang L, Price SC et al (2010) Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. Angew Chem Int Edit 49:7992–7995. https://doi.org/10.1002/anie.201003357

    CAS  Article  Google Scholar 

  65. 65

    Li W, Hendriks KH, Furlan A et al (2013) Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J Am Chem Soc 135:18942–18948. https://doi.org/10.1021/ja4101003

    CAS  Article  Google Scholar 

  66. 66

    Zhang F, Perzon E, Wang X et al (2005) Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm. Adv Funct Mater 15:745–750. https://doi.org/10.1002/adfm.200400416

    CAS  Article  Google Scholar 

  67. 67

    Y Xia, L Wang, X Deng et al (2006) Photocurrent response wavelength up to 1.1μm from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative. Appl. Phys. Lett. 89:081106. https://doi.org/10.1063/1.2338017

  68. 68

    Wang X, Perzon E, Delgado JL et al (2004) Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Appl Phys Lett 85:5081–5087. https://doi.org/10.1063/1.1825070

    CAS  Article  Google Scholar 

  69. 69

    Perzon E, Zhang F, Andersson M et al (2007) A conjugated polymer for near infrared optoelectronic applications. Adv Mater 19:3308–3311. https://doi.org/10.1002/adma.200700557

    CAS  Article  Google Scholar 

  70. 70

    Yi H, Johnson RG, Iraqi A et al (2008) Narrow energy gap polymers with absorptions up to 1 200 nm and their photovoltaic properties. Macromol Rapid Commun 29:1804–1809. https://doi.org/10.1002/marc.200800440

    CAS  Article  Google Scholar 

  71. 71

    London AE, Huang L, Zhang BA et al (2017) Donor–acceptor polymers with tunable infrared photoresponse. Polym Chem 8:2922–2930. https://doi.org/10.1039/C7PY00241F

    CAS  Article  Google Scholar 

  72. 72

    Wu Z, Yao W, London AE et al (2018) Elucidating the detectivity limits in shortwave infrared organic photodiodes. Adv Funct Mater 28:1800391. https://doi.org/10.1002/adfm.201800391

    CAS  Article  Google Scholar 

  73. 73

    Zoombelt AP, Fonrodona M, Wienk MM et al (2009) Photovoltaic performance of an ultrasmall band gap polymer. Org Lett 11:903–906. https://doi.org/10.1021/ol802839z

    CAS  Article  Google Scholar 

  74. 74

    Steckler TT, Zhang X, Hwang J et al (2009) A spray-processable, low bandgap, and ambipolar donor−acceptor conjugated polymer. J Am Chem Soc 131:2824–2826. https://doi.org/10.1021/ja809372u

    CAS  Article  Google Scholar 

  75. 75

    Huang X, Lan N, Yan Y et al (2020) An alternating D1-A-D2-A conjugated ternary copolymer containing [1,2,5]selenadiazolo[3,4-c]pyridine unit with photocurrent response Up to 1,100 nm. Front Chem 8:255. https://doi.org/10.3389/fchem.2020.00255

    CAS  Article  Google Scholar 

  76. 76

    Zoombelt AP, Mathijssen SGJ, Turbiez MGR et al (2010) Small band gap polymers based on diketopyrrolopyrrole. J Mater Chem 20:2240–2246. https://doi.org/10.1039/B919066J

    CAS  Article  Google Scholar 

  77. 77

    E Zhou, Q Wei, S Yamakawa et al (2010) Diketopyrrolopyrrole-based semiconducting polymer for photovoltaic device with photocurrent response wavelengths up to 1.1 μm. Macromolecules 43:821–826. https://doi.org/10.1021/ma902398q

  78. 78

    Hendriks KH, Li W, Wienk MM et al (2014) Small-bandgap semiconducting polymers with high near-infrared photoresponse. J Am Chem Soc 136:12130–12136. https://doi.org/10.1021/ja506265h

    CAS  Article  Google Scholar 

  79. 79

    Han H, Lee C, Kim H et al (2018) Flexible near-infrared plastic phototransistors with conjugated polymer gate-sensing layers. Adv Funct Mater 28:1800704. https://doi.org/10.1002/adfm.201800704

    CAS  Article  Google Scholar 

  80. 80

    Yilmaz MD, Aytun T, Frasconi M et al (2014) Photocurrent generation from a low band-gap and green BODIPY-based electrochromic polymer. Synth Met 197:52–57. https://doi.org/10.1016/j.synthmet.2014.08.008

    CAS  Article  Google Scholar 

  81. 81

    Squeo BM, Gasparini N, Ameri T et al (2015) Ultra low band gap α, β-unsubstituted BODIPY-based copolymer synthesized by palladium catalyzed cross-coupling polymerization for near infrared organic photovoltaics. J Mater Chem A 3:16279–16286. https://doi.org/10.1039/C5TA04229A

    CAS  Article  Google Scholar 

  82. 82

    Y Xia, L Wang, X Deng et al (2006) Photocurrent response wavelength up to 1.1 m from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative. Appl Phys Lett 89:081106-081106-3. https://doi.org/10.1063/1.2338017

  83. 83

    Cao X, Tong J, He Z et al (2018) An extremely narrow band gap conjugated polymer for photovoltaic devices covering UV to near-infrared light. Dyes Pigm 158:319–325. https://doi.org/10.1016/j.dyepig.2018.05.052

    CAS  Article  Google Scholar 

  84. 84

    Hwang Y-J, Kim FS, Xin H et al (2012) New thienothiadiazole-based conjugated copolymers for electronics and optoelectronics. Macromolecules 45:3732–3739. https://doi.org/10.1021/ma3000797

    CAS  Article  Google Scholar 

  85. 85

    Cimrová V, Pokorná V, Výprachtický D (2017) Effects of alkyl or alkyloxy side chains in poly[4,6-bis(3′-dodecylthien-2′-yl)thieno-[3,4-c][1,2,5]thiadiazole-5′,5′-diyl-alt-2,5-di(alkyl or alkyloxy)-1,4-phenylene]: Synthesis, photophysics, and spectroelectrochemical and photovoltaic properties. Polymer 118:180–191. https://doi.org/10.1016/j.polymer.2017.04.057

    CAS  Article  Google Scholar 

  86. 86

    Wienk MM, Turbiez MGR, Struijk MP et al (2006) Low-band gap poly(di-2-thienylthienopyrazine): fullerene solar cells. Appl Phys Lett 88:153511. https://doi.org/10.1063/1.2195897

    CAS  Article  Google Scholar 

  87. 87

    Chen J, Liao Q, Ye G et al (2013) D-A conjugated polymers based on tetracyclic acceptor units: synthesis and application in organic solar cells. Macromol Chem Phys 214:2054–2060. https://doi.org/10.1002/macp.201300294

    CAS  Article  Google Scholar 

  88. 88

    Hu XW, Dong Y, Huang F et al (2013) Solution-processed high-detectivity near-infrared polymer photodetectors fabricated by a novel low-bandgap semiconducting polymer. J Phys Chem C 117:6537–6543. https://doi.org/10.1021/jp4001237

    CAS  Article  Google Scholar 

  89. 89

    Verstraeten F, Gielen S, Verstappen P et al (2018) Near-infrared organic photodetectors based on bay-annulated indigo showing broadband absorption and high detectivities up to 1.1 μm. J Mater Chem C 6:11645–11650. https://doi.org/10.1039/C8TC04164D

  90. 90

    Ma L, Chen B, Guo Y et al (2018) NIR polymers and phototransistors. J Mater Chem C 6:13049–13058. https://doi.org/10.1039/C8TC03917H

    CAS  Article  Google Scholar 

  91. 91

    Gong X, Tong M, Xia Y et al (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325:1665–1667. https://doi.org/10.1126/science.1176706

    CAS  Article  Google Scholar 

  92. 92

    Chen E-C, Tseng S-R, Chao Y-C et al (2011) Polymer infrared photo-detector with high sensitivity up to 1100nm. Synth Met 161:1618–1622. https://doi.org/10.1016/j.synthmet.2011.05.027

    CAS  Article  Google Scholar 

  93. 93

    Han J, Yang D, Ma D et al (2018) Low-bandgap polymers for high-performance photodiodes with maximal EQE near 1200 nm and broad spectral response from 300 to 1700 nm. Adv Opt Mater 6:1800038. https://doi.org/10.1002/adom.201800038

    CAS  Article  Google Scholar 

  94. 94

    Qian G, Qi J, Davey JA et al (2012) Family of diazapentalene chromophores and narrow-band-gap polymers: synthesis, halochromism, halofluorism, and visible-near infrared photodetectivity. Chem Mater 24:2364–2372. https://doi.org/10.1021/cm300938s

    CAS  Article  Google Scholar 

  95. 95

    Khelifi W, Awada H, Brymora K et al (2019) Halochromic switch from the 1st to 2nd near-infrared window of diazapentalene-dithienosilole copolymers. Macromolecules 52:4820–4827. https://doi.org/10.1021/acs.macromol.9b00675

    CAS  Article  Google Scholar 

  96. 96

    Hu X, Wang K, Liu C et al (2014) High-detectivity inverted near-infrared polymer photodetectors using cross-linkable conjugated polyfluorene as an electron extraction layer. J Mater Chem C 2:9592–9598. https://doi.org/10.1039/C4TC02021A

    CAS  Article  Google Scholar 

  97. 97

    Wu Z, Yao W, London AE et al (2017) Temperature-dependent detectivity of near-infrared organic bulk heterojunction photodiodes. ACS Appl Mater Interfaces 9:1654–1660. https://doi.org/10.1021/acsami.6b12162

    CAS  Article  Google Scholar 

  98. 98

    Yao W, Wu Z, Huang E et al (2019) Organic bulk heterojunction infrared photodiodes for imaging out to 1300 nm. ACS Applied Electronic Materials 1:660–666. https://doi.org/10.1021/acsaelm.9b00009

    CAS  Article  Google Scholar 

  99. 99

    Li Y, Pan Z, Miao L et al (2014) Fluoro-benzoselenadiazole-based low band gap polymers for high efficiency organic solar cells. Polym Chem 5:330–334. https://doi.org/10.1039/C3PY01018J

    CAS  Article  Google Scholar 

  100. 100

    Hendriks KH, Heintges GHL, Gevaerts VS et al (2013) High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem Int Edit 52:8341–8344. https://doi.org/10.1002/anie.201302319

    CAS  Article  Google Scholar 

  101. 101

    Yang T, Sun K, Liu X et al (2012) Zinc oxide nanowire as an electron-extraction layer for broadband polymer photodetectors with an inverted device structure. J Phys Chem C 116:13650–13653. https://doi.org/10.1021/jp303016f

    CAS  Article  Google Scholar 

  102. 102

    Kang TE, Kim K-H, Kim BJ (2014) Design of terpolymers as electron donors for highly efficient polymer solar cells. J Mater Chem A 2:15252–15267. https://doi.org/10.1039/C4TA02426E

    CAS  Article  Google Scholar 

  103. 103

    Qi J, Zhou X, Yang D et al (2014) Optimization of solubility, film morphology and photodetector performance by molecular side-chain engineering of low-bandgap thienothiadiazole-based polymers. Adv Funct Mater 24:7605–7612. https://doi.org/10.1002/adfm.201401948

    CAS  Article  Google Scholar 

  104. 104

    Qin T, Zajaczkowski W, Pisula W et al (2014) Tailored donor-acceptor polymers with an A-D1–A–D2 structure: controlling intermolecular interactions to enable enhanced polymer photovoltaic devices. J Am Chem Soc 136:6049–6055. https://doi.org/10.1021/ja500935d

    CAS  Article  Google Scholar 

  105. 105

    Dang D, Yu D, Wang E (2019) Conjugated donor-acceptor terpolymers toward high-efficiency polymer solar cells. Adv Mater 31:1807019. https://doi.org/10.1002/adma.201807019

    CAS  Article  Google Scholar 

  106. 106

    Huang X, Zhang G, Zhou C et al (2015) Dithienosilole-benzothiadiazole-based ternary copolymers with a D1–A–D2–A structure for polymer solar cells. Polym Chem 6:4154–4161. https://doi.org/10.1039/C5PY00201J

    CAS  Article  Google Scholar 

  107. 107

    Hendriks KH, Heintges GHL, Wienk MM et al (2014) Comparing random and regular diketopyrrolopyrrole–bithiophene–thienopyrrolodione terpolymers for organic photovoltaics. J Mater Chem A 2:17899–17905. https://doi.org/10.1039/C4TA04118F

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 21805097), The Open Project of Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education (No. XN202009), The Open Project Fund of Key Laboratory of Radioactive and Rare Scattered Minerals, Ministry of Land and Resources (No. RRSM-KF2018-05) and The PhD Start-up Fund of Gannan Medical University (No. QD201907, No. HX202004).

Author information



Corresponding authors

Correspondence to Wei Zeng or Shengjian Liu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Maude Jimenez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Lan, N., Chen, W. et al. Low-bandgap conjugated polymers with photocurrent response over 1000 nm. J Mater Sci 56, 8334–8357 (2021). https://doi.org/10.1007/s10853-021-05825-1

Download citation