Molecular dynamics insight into the evolution of AlH3 nanoparticles in the thermal decomposition of insensitive energetic materials


Adding AlH3 nanoparticles (AHNPs) into energetic materials has become a widely used strategy to enhance the efficiency of heat release. However, the underlying mechanisms in the reaction between AHNPs and energetic materials are poorly understood. The evolution of AHNPs in 2,2′,4,4′,6,6′-hexanitrodiphenyl ethylene (HNS) was simulated by reactive dynamic based on ReaxFF force field. As a whole, adding AHNPs unexceptionally increases heat release, and the particle size, passivation shell, and contents of AHNPs influence the morphological evolution and hydrogen release performance. AHNPs with smaller size can rapidly release hydrogen under the drastic micro-explosion. In addition, the aggregation mechanism of AHNPs is revealed at the earlier and later stages of the reaction. Al-O, Al-C, and Al-N bonds are generated during the reaction. A large amounts of H of AHNPs and C of HNS cause O to be desorbed from the Al-contained cluster. For the core–shell structure or/and larger size AHNPs, their oxidation process undergoes a transformation of H2–H2O in the gas cavity. Carbon clusters formed during the reaction depend on the distribution of Al. The addition of AHNPs could promote the graphitization of carbon clusters. This work is expected to deepen insight into the reaction mechanism of AHNPs-containing energetic materials with negative oxygen balance.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18


  1. 1

    Wang B, Ma HH, Shen ZW, Yang M, Wang YX (2018) Detonation performance of emulsion explosives sensitized by hydrogen storage glass microspheres. Chin J Energ Mater 26(5):436–440.

    Article  Google Scholar 

  2. 2

    Elmas U, Bedir F, Kayfeci M (2017) Computational analysis of hydrogen storage capacity using process parameters for three different metal hydride materials. Int J Hydrogen Energy 43(23):10741–10754.

    CAS  Article  Google Scholar 

  3. 3

    Luo J, Xia H, Zhang W, Song S, Zhang Q (2020) A promising hydrogen peroxide adduct of ammonium cyclopentazolate as green propellant components. J Mater Chem.

    Article  Google Scholar 

  4. 4

    Zhu Z, Xia D, Li Y, Wang P, Yang Y (2019) Synthesis and hydrogen desorption properties of nanoscale α-alh3. Russ J Phys Chem A 93(13):2798–2803.

    CAS  Article  Google Scholar 

  5. 5

    Xue B, Lin MJ, Ma HH, Wang XX, Shen ZW (2018) Energy performance and aging of RDX-based TiH2, MgH2 explosive composites. Propellants, Explos, Pyrotech 43(7):671–678.

    CAS  Article  Google Scholar 

  6. 6

    Wang L, Rawal A, Aguey-Zinsou KF (2019) Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). Chem Eng Sci 194:64–70.

    CAS  Article  Google Scholar 

  7. 7

    Gao SC, Liu HZ, Wang XH, Xu L, Liu SY, Sheng P, Zhao GY, Wang B, Li H, Yan M (2017) Hydrogen desorption behaviors of gamma-AlH3: Diverse decomposition mechanisms for the outer layer and the inner part of gamma-AlH3 particle. Int J Hydrog Energy 42(40):25310–25315.

    CAS  Article  Google Scholar 

  8. 8

    Chen SH, Tang Y, Yu HS, Bao LR, Zhang W, DeLuca LT (2019) The rapid H2 release from AlH3 dehydrogenation forming porous layer in AlH3/hydroxyl-terminated polybutadiene (HTPB) fuels during combustion. J Hazard Mater 371:53–61.

    CAS  Article  Google Scholar 

  9. 9

    Maggi F, Gariani G, Galfctti L, Deluca LT (2012) Theoretical analysis of hydrides in solid and hybrid rocket propulsion. Int J Hydrogen Energy 37(2):1760–1769.

    CAS  Article  Google Scholar 

  10. 10

    Deluca LT, Galfetti L, Severini F, Rossettini L, Meda L, Marra G (2007) Physical and ballistic characterization of alh3-based space propellants. Aerosp Technol 11(1):18–25.

    CAS  Article  Google Scholar 

  11. 11

    Wang YQ, Lu LL, Lai L, Wang BS (2019) Comparison of interactions between aluminium hydride oxide surfaces and three energetic plasticizers: DFT calculations. Appl Surf Sci 488(15):237–245.

    CAS  Article  Google Scholar 

  12. 12

    Pietrzykowski A, Jurkowski J, Zygmunt B, Lipinski M (2013) Synthesis of aluminum hydride and its use as additive to composite propellants. Przem Chem 92(3):365–368

    CAS  Google Scholar 

  13. 13

    Weiser V, Kelzenberg S, Eisenreich N (2001) Influence of the metal particle size on the ignition of energetic materials. Propellants, Explos, Pyrotech 26(6):284–289.;2

    CAS  Article  Google Scholar 

  14. 14

    Ju HX, Li XW, Zhao FQ, Pang WQ, Jia SL, Mo HJ (2011) Review on application of nano-metal powders in explosive and propellants. J Energ Mater 19(2):232–239.

    CAS  Article  Google Scholar 

  15. 15

    Jiang Z, Li SF, Zhao FQ, Liu ZR, Yin CM, Luo Y, Li SW (2006) Research on the combustion properties of propellants with low content of nano metal powders. Propellants, Explos, Pyrotech 31(2):139–147.

    CAS  Article  Google Scholar 

  16. 16

    Chalghoum F, Trache D, Maggi F, Benziane M (2020) Effect of complex metal hydrides on the elimination of hydrochloric acid exhaust products from high-performance composite solid propellants: a theoretical analysis. Propellants, Explos, Pyrotech 45(8):1204–1215.

    CAS  Article  Google Scholar 

  17. 17

    Lawrence AR, Laktas JM, Place GJ, Jelliss PA, Buckner SW, Sippel TR (2019) Organically-capped, nanoscale alkali metal hydride and aluminum particles as solid propellant additives. J Propul Power 35(4):1–11.

    Article  Google Scholar 

  18. 18

    van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409.

    CAS  Article  Google Scholar 

  19. 19

    Mei Z, Li CF, Zhao FQ, Xu SY, Ju XH (2019) Reactive molecular dynamics simulation of thermal decomposition for nano-AlH3/TNT and nano-AlH3/CL-20 composites. J Mater Sci 54(9):7016–7027.

    CAS  Article  Google Scholar 

  20. 20

    Li CF, Mei Z, Zhao FQ, Xu SY, Ju XH (2018) Molecular dynamic simulation for thermal decomposition of rdx with nano-AlH3 particles. Phys Chem Chem Phys 20(20):14192–14199.

    CAS  Article  Google Scholar 

  21. 21

    Wang GX, Shi CH, Gong XD, Xiao HM (2009) Theoretical investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS. J Phys Chem A 113(7):1318–1326.

    CAS  Article  Google Scholar 

  22. 22

    Chen L, Wang HQ, Wang FP, Geng DS, Wu JY, Lu JY (2018) Thermal decomposition mechanism of 2,2 ’,4,4 ’,6,6 ’-hexanitrostilbene by reaxFF reactive molecular dynamics simulations. J Phys Chem C 122(34):19309–19318.

    CAS  Article  Google Scholar 

  23. 23

    Song XL, Wang Y, Zhao SS, An CW, Wang JY, Zhang JL (2018) Characterization and thermal decomposition of nanometer 2,2, 4,4, 6,6-hexanitro-stilbene and 1,3,5-triamino-2,4,6-trinitrobenzene fabricated by a mechanical milling method. J Energ Mater 2:179–190.

    CAS  Article  Google Scholar 

  24. 24

    Zhou SQ, Ju XH, Gu X, Zhao FQ, Yi JH (2012) Adsorption of 2,4,6-trinitrotoluene on Al(111) ultrathin film: periodic DFT calculations. Struct Chem 23(3):921–930.

    CAS  Article  Google Scholar 

  25. 25

    Pouretedal HR, Damiri S, Bighamian Z (2019) The non-isothermal gravimetric method for study the thermal decomposition kinetic of hnbb and hns explosives. Defence Technol 16(1):251–256.

    Article  Google Scholar 

  26. 26.

    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    CAS  Article  Google Scholar 

  27. 27

    Acceryls Inc. Material Studio 7.0. Acceryls Inc, San Diego. 2013.

  28. 28

    A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO — the open visualization tool. Model. Simulat. Mater. Sci. Eng, 2010,18

  29. 29

    Kuznetsov VL, Chuvilin AL, Moroz EM, Kolomiichuk VN, Shaikhutdinov SK, Butenko YV (1994) Effect of explosion conditions on the structure of detonation soots: ultradisperse diamond and onion carbon. Carbon 32(5):873–882.

    Article  Google Scholar 

  30. 30

    Hao W, Li G, Niu L, Gou R, Zhang C (2020) Molecular dynamics insight into the evolution of al nanoparticles in the thermal decomposition of energetic materials. J Phys Chem C 124(19):10783–10792.

    CAS  Article  Google Scholar 

  31. 31

    Hao W, Niu L, Gou R, Zhang C (2019) Influence of Al and Al2O3 nanoparticles on the thermal decay of 1,3,5-trinitro-1,3,5-triazinane (RDX): reactive molecular dynamics simulations. J Phys Chem C 123:14067–14080.

    CAS  Article  Google Scholar 

  32. 32

    MF Gogulya, MA Brazhnikov, 2009 In Heterogeneous Detonation. Hang, F, Springer, Berlin

  33. 33

    V. Babuk, I. Dolotkazin, A. Gamsov, A. Glebov, L.T. DeLuca, Galfetti, L. 2009 Nanoaluminum as a Solid Propellant Fuel. J. Propul. Power, 25, 482−489.

Download references

Author information




YZ designed and wrote this paper, FQZ reviewed and edited this paper, SYX wrote the important program for the data processing, and XHJ improved this paper.

Corresponding author

Correspondence to Xue-Hai Ju.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: N. Ravishankar.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhao, FQ., Xu, SY. et al. Molecular dynamics insight into the evolution of AlH3 nanoparticles in the thermal decomposition of insensitive energetic materials. J Mater Sci 56, 9209–9226 (2021).

Download citation