Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries

Abstract

Owing to their entropy stabilization and multi-principal effect, transition-metal-based high-entropy oxides are attracting extensive attention as an effective family of anode materials for lithium ion batteries (LIBs). Herein, spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ HEO nanocrystalline powder with high concentration of oxygen vacancies is successfully prepared by the method of solution combustion synthesis (SCS), and explored as a novel anode active material for LIBs. As compared to (CoCrFeMnNi)0.6O4-δ, the inactive Al3+-doped (Al0.2CoCrFeMnNi)0.58O4-δ anode provides more than twice the reversible specific capacity of 554 mAh g−1 after 500 cycles at a specific current of 200 mA g−1, accompanied with good rate capability (634 mAh g−1 even at 3 A g−1) and cycling performance. The enhanced electrochemical properties can be attributed to that inactive Al3+-doping resulted into the more space for Li+ intercalation and deintercalation, enhanced structural stability, and the improved electronic conductivity and Li+ diffusivity.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Zhou L, Zhang K, Hu Z et al (2018) Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv Energy Mater 8:1701415

    Google Scholar 

  2. 2

    Nitta N, Wu F, Lee JT et al (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    CAS  Google Scholar 

  3. 3

    Gao Y, Yin L, Kim SJ et al (2019) Enhanced lithium storage by ZnFe2O4 nanofibers as anode materials for lithium-ion battery. Electrochim Acta 296:565–574

    CAS  Google Scholar 

  4. 4

    Xu S, Hessel CM, Ren H et al (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7:632–637

    CAS  Google Scholar 

  5. 5

    Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    CAS  Google Scholar 

  6. 6

    Wang W, Ai T, Li W et al (2017) Photoelectric and electrochemical performance of Al-doped ZnO Thin films hydrothermally grown on graphene-coated polyethylene terephthalate bilayer flexible substrates. J Phys Chem C 121:28148–28157

    CAS  Google Scholar 

  7. 7

    Han X, Cui Y, Liu H (2020) Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries. J Alloys Compd 814:152348

    CAS  Google Scholar 

  8. 8

    Ma Y, Fang C, Ding B et al (2013) Fe-doped MnxOy with hierarchical porosity as a high-performance lithium-ion battery anode. Adv Mater 25:4646–4652

    CAS  Google Scholar 

  9. 9

    Woo SW, Myung ST, Bang H et al (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54:3851–3856

    CAS  Google Scholar 

  10. 10

    Huang B, Li X, Wang Z et al (2014) Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceram Int 40:13223–13230

    CAS  Google Scholar 

  11. 11

    Wang D, Zhou W, Zhang R et al (2018) MOF-derived Zn–Mn mixed oxides@carbon hollow disks with robust hierarchical structure for high-performance lithium-ion batteries. J Mater Chem A 6:2974–2983

    CAS  Google Scholar 

  12. 12

    Liu H, Zheng H, Li L et al (2018) Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiation-desodiation cycling. Adv Mater Interf 5:1701255

    Google Scholar 

  13. 13

    Sarkar A, Velasco L, Wang D et al (2018) High entropy oxides for reversible energy storage. Nat Commun 9:3400

    Google Scholar 

  14. 14

    Qiu N, Chen H, Yang Z et al (2019) A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J Alloys Compd 777:767–774

    CAS  Google Scholar 

  15. 15

    Chen H, Qiu N, Wu B et al (2019) Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties. RSC Adv 9:28908–28915

    CAS  Google Scholar 

  16. 16

    Sarkar A, Wang Q, Schiele A et al (2019) High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater 31:1806236

    Google Scholar 

  17. 17

    Wang Q, Sarkar A, Li Z et al (2019) High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem Commun 100:121–125

    Google Scholar 

  18. 18

    Chen H, Qiu N, Wu B et al (2020) A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries. RSC Adv 10:9736–9744

    CAS  Google Scholar 

  19. 19

    Bérardan D, Franger S, Meena AK et al (2016) Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A 4:9536–9541

    Google Scholar 

  20. 20

    Wang D, Jiang S, Duan C et al (2020) Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J Alloys Compd 844:156158

    CAS  Google Scholar 

  21. 21

    Mao A, Quan F, Xiang H-Z et al (2019) Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J Mol Struct 1194:11–18

    CAS  Google Scholar 

  22. 22

    Xiang H-Z, Xie H-X, Mao A et al (2020) Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis. Int J Mater Res 111:246–249

    CAS  Google Scholar 

  23. 23

    Mao A, Xiang H-Z, Zhang Z-G et al (2020) A new class of spinel high-entropy oxides with controllable magnetic properties. J Magn Magn Mater 497:165884

    CAS  Google Scholar 

  24. 24

    Xiang H, Xie H, W LI, et al (2020) Synthesis and electrochemical performance investigation of spinel-type high-entropy oxides. Chem J Chin U 41:1801–1809

    Google Scholar 

  25. 25

    Mao A, Xie H-X, Xiang H-Z et al (2020) A novel six-component spinel-structure high-entropy oxide with ferrimagnetic property. J Magn Magn Mater 503:166594

    CAS  Google Scholar 

  26. 26

    Dąbrowa J, Stygar M, Mikuła A et al (2018) Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater Lett 216:32–36

    Google Scholar 

  27. 27

    Wang H, Gao R, Li Z et al (2018) Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2 as a sodium ion battery cathode material. Inorg Chem 57:5249–5257

    CAS  Google Scholar 

  28. 28

    Mo M, Hui KS, Hong X et al (2014) Improved cycling and rate performance of Sm-doped LiNi0.5Mn1.5O4 cathode materials for 5V lithium ion batteries. Appl Surf Sci 290:412–418

    CAS  Google Scholar 

  29. 29

    Xiang M, Su C-W, Feng L et al (2014) Rapid synthesis of high-cycling performance LiMgxMn2–xO4 (x ≤ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim Acta 125:524–529

    CAS  Google Scholar 

  30. 30

    Manikandan A, Durka M, Seevakan K et al (2015) A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1−xFe2O4 (0.0≤x≤0.5) nanophotocatalysts. J Supercond Nov Magn 28:1405–1416

    CAS  Google Scholar 

  31. 31

    Ashok A, Kumar A, Bhosale RR et al (2018) Combustion synthesis of bifunctional LaMO3 (M=Cr, Mn, Fe Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. J Electroanal Chem 809:22–30

    CAS  Google Scholar 

  32. 32

    Khort A, Podbolotov K, Serrano García R et al (2018) One-step solution combustion synthesis of cobalt nanopowder in air atmosphere: the fuel effect. Inorg Chem 57:1464–1473

    CAS  Google Scholar 

  33. 33

    Lin J-Y, Hsu C-C, Ho H-P et al (2013) Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim Acta 87:126–132

    CAS  Google Scholar 

  34. 34

    Sanchez JS, Pendashteh A, Palma J et al (2018) Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim Acta 279:44–56

    CAS  Google Scholar 

  35. 35

    Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    CAS  Google Scholar 

  36. 36

    Zhu YM, Zhang L, Zhao BT et al (2019) Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides. Adv Funct Mater 29:1901783

  37. 37

    Fang D-l, Wang Z-b, Yang P-h et al (2006) Preparation of ultra-fine nickel manganite powders and ceramics by a solid-state coordination reaction. J Am Ceram Soc 89:230–235

    CAS  Google Scholar 

  38. 38

    Phan TN, Gong MK, Thangavel R et al (2019) Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): Role of mesopores and mesopore structures. J Alloys Compd 780:90–97

    CAS  Google Scholar 

  39. 39

    Zou F, Hu X, Li Z et al (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26:6622–6628

    CAS  Google Scholar 

  40. 40

    Fang D-L, Zhao Y-C, Wang S-S et al (2020) Highly efficient synthesis of nano-Si anode material for Li-ion batteries by a ball-milling assisted low-temperature aluminothermic reduction. Electrochim Acta 330:135346

    CAS  Google Scholar 

  41. 41

    Lu C-H, Lin S-W (2001) Influence of the particle size on the electrochemical properties of lithium manganese oxide. J Power Sour 97–98:458–460

    Google Scholar 

  42. 42

    Maleski K, Ren CE, Zhao M-Q et al (2018) Size-dependent physical and electrochemical properties of two-dimensional mxene flakes. ACS Appl Mater Inter 10:24491–24498

    CAS  Google Scholar 

  43. 43

    Hu S, Wang C, Zhou L et al (2018) Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nanobricks for high-rate lithium-ion batteries. Ceram Int 44:14995–15000

    CAS  Google Scholar 

  44. 44

    Bao S-J, Liang Y-Y, Zhou W-J et al (2006) Synthesis and electrochemical properties of LiAl0.1Mn1.9O4 by microwave-assisted sol–gel method. J Power Sour 154:239–245

    CAS  Google Scholar 

  45. 45

    Li Y-C, Xiang W, Wu Z-G et al (2018) Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim Acta 291:84–94

    CAS  Google Scholar 

  46. 46

    Cao K, Jin T, Yang L et al (2017) Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater Chem Front 1:2213–2242

    CAS  Google Scholar 

  47. 47

    Nguyen TX, Patra J, Chang J-K et al (2020) High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. J Mater Chem A 8:18963–18973

    CAS  Google Scholar 

  48. 48

    Li C, Li G, Guan X (2018) Synthesis and electrochemical performance of micro-nano structured LiFe1−xMnxPO4/C (0 ≤x ≤ 0.05) cathode for lithium-ion batteries. J Energy Chem 27:923–929

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Anhui Province (Grant No. 2008085ME125), the Open Fund Project of Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education (Grant No. JKF20-6), and National Natural Science Foundation of China (Grant No. 51971001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Aiqin Mao or Cui-Hong Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Mark Bissett.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, HZ., Xie, HX., Chen, YX. et al. Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries. J Mater Sci 56, 8127–8142 (2021). https://doi.org/10.1007/s10853-021-05805-5

Download citation