Fast and facile synthesis of carbonate-modified NiFe layered double hydroxide nanosheets by dielectric barrier discharge microplasma: mechanism and application in enhanced water oxidation

Abstract

A fast and facile approach was designed to fabricate carbonate (Ci)-modified NiFe layered double hydroxide (LDH) nanosheets array on carbon cloth (CC) by dielectric barrier discharge (DBD) microplasma. The whole synthetic process can be completed within 1 h at ambient temperature and pressure. The prepared NiFe LDH-Ci/CC emerges a superior catalytic activity for oxygen evolving reaction in alkaline media, which only demands an overpotential of 240 mV at 20 mA cm−2 with a high stability for at least 90 h, and shows an excellent turnover frequency value of 0.323 mol O2 s−1 at 350 mV. Time-resolved measurements of direct emission spectra for nitrogen second positive system N2(C-B) were measured in the DBD microplasma discharge. And a high vibrational temperature (Tvib, 3100 K) and rotational temperature (Trot, 340 K) were obtained, indicating a great chemical reactivity. In addition, the intermediate products of hydroxyl radicals (·OH) were identified and the possible synthesis mechanism was tentatively proposed.

Graphical abstract

A fast and facile approach was designed to fabricate NiFe LDH-Ci/CC by DBD microplasma.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Jones VK, Scharlemann JPW, Burgess ND (2018) Present and future biodiversity risks from fossil fuel exploitation. Conserv Lett 11:e12448

    Google Scholar 

  2. 2

    Palmer G (2019) Renewables rise above fossil fuels. Nano Energy 4:538–539

    Google Scholar 

  3. 3

    Zhang C, Zhou KL, Yang SL, Shao Z (2017) On electricity consumption and economic growth in China. Renew Sust Energ Rev 76:353–368

    Google Scholar 

  4. 4

    Luderer G, Vrontisi Z, Bertram C, Edelenbosch OY, Pietzcker RC, Rogelj J, De Boer HS, Drouet L, Emmerling J, Fricko O, Fujimori S, Havlik P, Iyer G, Keramidas K, Kitous A, Pehl M, Krey V, Riahi K, Saveyn B, Tavoni M, Van Vuuren DP, Kriegler E (2018) Residual fossil CO2 emissions in 1.5–2 degrees C pathways. Nat Clim Chang 8:626–633

    CAS  Google Scholar 

  5. 5

    Tollefson J (2018) Can the world kick its fossil-fuel addiction fast enough. Nature 556:422–425

    CAS  Google Scholar 

  6. 6

    Detz RJ, Reek JNH, van der Zwaan BCC (2018) The future of solar fuels: when could they become competitive? Energy Environ Sci 11:1653–1669

    CAS  Google Scholar 

  7. 7

    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    CAS  Google Scholar 

  8. 8

    Gao R, Zhang H, Yan DP (2017) Iron diselenide nanoplatelets: stable and efficient water-electrolysis catalysts. Nano Energy 31:90–95

    CAS  Google Scholar 

  9. 9

    Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    CAS  Google Scholar 

  10. 10

    McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357

    CAS  Google Scholar 

  11. 11

    Gao MY, Zeng JR, Zhang QB, Yang C, Li XT, Hua YX, Xu CY (2018) Scalable one-step electrochemical deposition of nanoporous amorphous S-doped NiFe2O4/Ni3Fe composite films as highly efficient electrocatalysts for oxygen evolution with ultrahigh stability. J Mater Chem A 6:1551–1560

    CAS  Google Scholar 

  12. 12

    Ji YY, Yang L, Ren X, Cui GW, Xiong XL, Sun XP (2018) Nanoporous CoP3 nanowire array: acid etching preparation and application as a highly active electrocatalyst for the hydrogen evolution reaction in alkaline solution. ACS Sustain Chem Eng 6:11186–11189

    CAS  Google Scholar 

  13. 13

    Xie MW, Xiong XL, Yang L, Shi XF, Asiri AM, Sun XP (2018) An Fe(TCNQ)2 nanowire array on Fe foil: an efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chem Commun 54:2300–2303

    CAS  Google Scholar 

  14. 14

    Ji YY, Ma M, Ji XQ, Xiong XL, Sun XP (2018) Nickel-carbonate nanowire array: an efficient and durable electrocatalyst for water oxidation under nearly neutral conditions. Front Chem Sci Eng 12:467–472

    CAS  Google Scholar 

  15. 15

    Ji YY, Yang L, Ren X, Cui GW, Xiong XL, Sun XP (2018) Full water splitting electrocatalyzed by NiWO4 nanowire array. ACS Sustain Chem Eng 6:9555–9559

    CAS  Google Scholar 

  16. 16

    Yang L, Xie LS, Ge RX, Kong RM, Liu ZA, Du G, Asiri AM, Yao YD, Luo YL (2017) Core shell NiFe-LDH@NiFe-Bi nanoarray: In situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Appl Mater Interfaces 9:19502–19506

    CAS  Google Scholar 

  17. 17

    Zhang BX, Wang SY, Ma Z, Qiu YF (2019) Ni0-rich Ni/NiO nanocrystals for efficient water-to-hydrogen conversion via urea electro-oxidation. Appl Surf Sci 496:143710

    CAS  Google Scholar 

  18. 18

    Luo YJ, Lin DF, Zheng YB, Feng XS, Chen QH, Zhang K, Wang XY, Jiang LL (2020) MnO2 nanoparticles encapsuled in spheres of Ce–Mn solid solution: efficient catalyst and good water tolerance for low-temperature toluene oxidation. Appl Surf Sci 504:144481

    CAS  Google Scholar 

  19. 19

    Yao R, Wu Y, Wang MH, Li N, Zhao F, Zhao Q, Li JP, Liu G (2019) Amorphous CoFeP/NC hybrids as highly efficient electrocatalysts for water oxidation. Int J Hydrog Energy 44:30196–30207

    CAS  Google Scholar 

  20. 20

    Ye W, Yang YS, Fang XY, Arif M, Chen XB, Yan DP (2019) 2D cocrystallized metal-organic nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. ACS Sustain Chem Eng 7:18085–18092

    CAS  Google Scholar 

  21. 21

    Zeng GH, Wang XJ, Yu X, Guo J, Zhu Y, Zhang YM (2019) Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation. J Power Sources 444:227300

    CAS  Google Scholar 

  22. 22

    Arif M, Yasin G, Luo L, Ye W, Mushtaq MA, Fang XY, Xiang X, Ji SF, Yan DP (2020) Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl Catal B Environ 265:118559

    CAS  Google Scholar 

  23. 23

    Farhat R, Dhainy J, Halaoui LI (2020) Oer catalysis at activated and codeposited NiFe-oxo/hydroxide thin films is due to postdeposition surface-Fe and is not sustainable without Fe in solution. ACS Catal 10:20–35

    CAS  Google Scholar 

  24. 24

    Gao R, Yan DP (2020) Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv Energy Mater 10:1900954

    CAS  Google Scholar 

  25. 25

    Gao R, Yan D (2018) Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res 11:1883–1894

    CAS  Google Scholar 

  26. 26

    Gong M, Li YG, Wang HL, Liang YY, Wu JZ, Zhou JG, Wang J, Regier T, Wei F, Dai HJ (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455

    CAS  Google Scholar 

  27. 27

    Tang D, Liu J, Wu XY, Liu RH, Han X, Han YZ, Huang H, Liu Y, Kang ZH (2014) Carbon quantum Dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl Mater Interfaces 6:7918–7925

    CAS  Google Scholar 

  28. 28

    Ma M, Liu YW, Ma X, Ge RX, Qu FL, Liu Z, Du G, Asiri AM, Yao YD, Sun XP (2017) Highly efficient and durable water oxidation in a near-neutral carbonate electrolyte electrocatalyzed by a core-shell structured NiO@Ni–Ci nanosheet array. Sustain Energ Fuels 1:1287–1291

    CAS  Google Scholar 

  29. 29

    Gao ZW, Liu JY, Chen XM, Zheng XL, Mao J, Liu H, Ma T, Li L, Wang WC, Du XW (2019) Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv Mater 31:1804769

    Google Scholar 

  30. 30

    Wang Q, Chen YL, Zhu RX, Luo MF, Zou ZR, Yu HM, Jiang X, Xiong XL (2020) One-step synthesis of Co(OH)F nanoflower based on micro-plasma: as an effective non-enzymatic glucose sensor. Sens Actuator B Chem 304:127282

    CAS  Google Scholar 

  31. 31

    Wang W, Liu YC, Li J, Luo J, Fu L, Chen SL (2018) NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J Mater Chem A 6:14299–14306

    CAS  Google Scholar 

  32. 32

    Zhang C, Cai X, Xu D, Chen W, Fang Y, Yu X (2018) Mn doped FeCO3/reduced graphene composite as anode material for high performance lithium-ion batteries. Appl Surf Sci 428:73–81

    CAS  Google Scholar 

  33. 33

    Kong XZ, Wang YP, Lin JD, Liang SQ, Pan AQ, Cao GZ (2018) Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries. Electrochim Acta 259:419–426

    CAS  Google Scholar 

  34. 34

    Xie MJ, Xu ZC, Duan SY, Tian ZF, Zhang Y, Xiang K, Lin M, Guo XF, Ding WP (2018) Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res 11:216–224

    CAS  Google Scholar 

  35. 35

    Zuo Q, Liu TT, Chen CS, Ji Y, Gong XQ, Mai YY, Zhou YF (2019) Ultrathin metal-organic framework nanosheets with ultrahigh loading of single pt atoms for efficient visible-light-driven photocatalytic H-2 evolution. Angew Chem Int Edit 58:10198–10203

    CAS  Google Scholar 

  36. 36

    Yu JF, Wang Q, O’Hare D, Sun LY (2017) Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev 46:5950–5974

    CAS  Google Scholar 

  37. 37

    Wang CH, Yang HC, Zhang YJ, Wang QB (2019) NiFe alloy nanoparticles with HCP crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew Chem Int Edit 58:6099–6103

    CAS  Google Scholar 

  38. 38

    Xie FY, Wu HL, Mou JR, Lin DM, Xu CG, Wu C, Sun XP (2017) Ni3N@Ni–Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. J Catal 356:165–172

    CAS  Google Scholar 

  39. 39

    Luo LH, Wang ML, Cui Y, Chen ZY, Wu JX, Cao YL, Luo J, Dai YH, Li WX, Bao J, Zeng J (2020) Surface iron species in palladium–iron intermetallic nanocrystals that promote and stabilize CO2 methanation. Angew Chem Int Edit 59:14434–14442

    CAS  Google Scholar 

  40. 40

    Shi GD, Yu C, Fan ZX, Li JB, Yuan MJ (2019) Graphdiyne-supported NiFe layered double hydroxide nanosheets as functional electrocatalysts for oxygen evolution. ACS Appl Mater Interfaces 11:2662–2669

    CAS  Google Scholar 

  41. 41

    Zhou YF, Wang ZX, Pan ZY, Liu L, Xi JY, Luo XL, Shen Y (2019) Exceptional performance of hierarchical Ni–Fe (hydr)oxide@NiCu electrocatalysts for water splitting. Adv Mater 31:1806769

    Google Scholar 

  42. 42

    Ren JT, Yuan GG, Weng CC, Chen L, Yuan ZY (2018) Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale 10:10620–10628

    CAS  Google Scholar 

  43. 43

    Su WF, Lin T, Chu W, Zhu YC, Li J, Zhao XS (2016) Novel synthesis of RGO/NiCoAl-LDH nanosheets on nickel foam for supercapacitors with high capacitance. RSC Adv 6:113123–113131

    CAS  Google Scholar 

  44. 44

    Hunter BM, Blakemore JD, Deimund M, Gray HB, Winkler JR, Muller AM (2014) Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J Am Chem Soc 136:13118–13121

    CAS  Google Scholar 

  45. 45

    Zhao Y, Chen G, Bian T, Zhou C, Waterhouse GI, Wu LZ, Tung CH, Smith LJ, O’Hare D, Zhang T (2015) Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv Mater 27:7824–7831

    CAS  Google Scholar 

  46. 46

    Luo M, Cai Z, Wang C, Bi YM, Qian L, Hao YC, Li L, Kuang Y, Li YP, Lei XD, Huo ZY, Liu W, Wang HL, Sun XM, Duan X (2017) Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Res 10:1732–1739

    CAS  Google Scholar 

  47. 47

    Parida KM, Mohapatra L (2012) Carbonate intercalated Zn/Fe layered double hydroxide: a novel photocatalyst for the enhanced photo degradation of azo dyes. Chem Eng J 179:131–139

    CAS  Google Scholar 

  48. 48

    Zhang HC, Li YJ, Xu TH, Wang JB, Huo ZY, Wan PB, Sun XM (2015) Amorphous co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution. J Mater Chem A 3:15020–15023

    CAS  Google Scholar 

  49. 49

    Xie LS, Zhang R, Cui L, Liu DN, Hao S, Ma YJ, Du G, Asiri AM, Sun XP (2017) High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew Chem Int Edit 56:1064–1068

    CAS  Google Scholar 

  50. 50

    Liu Y, Ma C, Zhang QH, Wang W, Pan PF, Gu L, Xu DD, Bao JC, Dai ZH (2019) 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv Mater 31:1900062

    Google Scholar 

  51. 51

    Liang H, Gandi AN, Xia C, Hedhili MN, Anjum DH, Schwingenschlogl U, Alshareef HN (2017) Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett 2:1035–1042

    CAS  Google Scholar 

  52. 52

    Jiang Y, Deng YP, Liang RL, Fu J, Luo D, Liu GH, Li JD, Zhang Z, Hu YF, Chen ZW (2019) Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-Air batteries. Adv Energy Mater 9:1900911

    Google Scholar 

  53. 53

    Li YB, Tan X, Chen S, Bo X, Ren HJ, Smith SC, Zhao C (2019) Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution. Angew Chem Int Edit 58:461–466

    CAS  Google Scholar 

  54. 54

    Xu NN, Zhang YX, Zhang T, Liu YY, Qiao JL (2019) Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy 57:176–185

    CAS  Google Scholar 

  55. 55

    Bahar PT, Lokhande AC, Jo E, Pawar BS, Gang MG, Pawar SM, Kim JH (2019) Facile electrosynthesis of Fe (Ni/Co) hydroxyphosphate as a bifunctional electrocatalyst for efficient water splitting. J Ind Eng Chem 70:116–123

    Google Scholar 

  56. 56

    Zhang RX, Cheng SQ, Li N, Ke WT (2020) N,S-codoped graphene loaded Ni–Co bimetal sulfides for enhanced oxygen evolution activity. Appl Surf Sci 503:144146

    CAS  Google Scholar 

  57. 57

    Amorim I, Xu J, Zhang N, Xiong D, Thalluri SM, Thomas R, Sousa JP, Araújo A, Li H, Liu L (2019) Bi-metallic cobalt–nickel phosphide nanowires for electrocatalysis of the oxygen and hydrogen evolution reactions. Catal Today 358:196–202

    Google Scholar 

  58. 58

    Liu HX, Wang YR, Lu XY, Hu Y, Zhu GY, Chen RP, Ma LB, Zhu HF, Tie ZX, Liu J, Jin Z (2017) The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy 35:350–357

    CAS  Google Scholar 

  59. 59

    Li J, Wang J, Lei BY, Zhang TY, Tang J, Wang YS, Zhao W, Duan YX (2020) A highly cost-efficient large-scale uniform laminar plasma jet array enhanced by V–I characteristic modulation in a non-self-sustained atmospheric discharge. Adv Sci 7:1902616

    CAS  Google Scholar 

  60. 60

    Tang J, Ding XL, Zhang P, Lei BY, Zhao ZJ, Duan YX (2018) A highly efficient magnetically confined ion source for real time on-line monitoring of trace compounds in ambient air. Chem Commun 54:12962–12965

    CAS  Google Scholar 

  61. 61

    Elkholy A, Shoshyn Y, Nijdam S, van Oijen JA, van Veldhuizen EM, Ebert U, de Goey LPH (2018) Burning velocity measurement of lean methane-air flames in a new nanosecond DBD microplasma burner platform. Exp Therm Fluid Sci 95:18–26

    CAS  Google Scholar 

  62. 62

    Jiang N, Guo LJ, Qiu C, Zhang Y, Shang KF, Lu N, Li J, Wu Y (2018) Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes. Chem Eng J 350:12–19

    CAS  Google Scholar 

  63. 63

    Lin L, Starostin SA, Li S, Hessel V (2018) Synthesis of metallic nanoparticles by microplasma. Phys Sci Rev 3:1902616

    Google Scholar 

  64. 64

    Es-sebbar E, Bauville G, Fleury M, Pasquiers S, Sousa JS (2019) Spatio-temporal distribution of absolute densities of argon metastable 1s(5) state in the diffuse area of an atmospheric pressure nanosecond pulsed argon microplasma jet propagating into ambient air. J Appl Phys 126:073302

    Google Scholar 

  65. 65

    Jiang X, Lin ZE, Zeng XL, He J, Xu FJ, Deng PC, Jia J, Jiang XM, Hou XD, Long Z (2019) Plasma-catalysed reaction Mn+ + L-H -> MOFs: facile and tunable construction of metal–organic frameworks in dielectric barrier discharge. Chem Commun 55:12192–12195

    CAS  Google Scholar 

  66. 66

    Merche D, Vandencasteele N, Reniers F (2012) Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films 520:4219–4236

    CAS  Google Scholar 

  67. 67

    Liu Y, Fan Q, Wang JL (2018) Zn–Fe–CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole. J Hazard Mater 342:166–176

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 21605108) and the Foundation of Sichuan Normal University No. ZZYQ2020006 for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ke Huang or Xiaoli Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Till Froemling.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 2468 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, J., Wang, Q. et al. Fast and facile synthesis of carbonate-modified NiFe layered double hydroxide nanosheets by dielectric barrier discharge microplasma: mechanism and application in enhanced water oxidation. J Mater Sci 56, 8115–8126 (2021). https://doi.org/10.1007/s10853-021-05798-1

Download citation