Skip to main content
Log in

Electronic and magnetic properties of yttria-stabilized zirconia (6.7 mol% in Y2O3) doped with Er3+ ions from first-principle computations

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Yttria-stabilized zirconia (YSZ) is a widely recognized ceramic of distinct electrical, mechanical and optical properties. Although YSZ is an intrinsically paramagnetic solid, it could potentially transform to a magnetic semiconductor by incorporating in its crystalline structure isolated atoms bearing unpaired valence electrons. Based on this hypothesis and motivated by the latest advances on YSZ doped with rare-earth atoms, in the current article we report on the electronic and magnetic properties of YSZ doped with Er3+ ([Xe]4f116s0) cations that comprise three “unpaired” 4f electrons in their ground state electronic configuration. Our computations, conducted on YSZ 6.7 mol% in Y2O3 doped with two different Er3+ concentrations (3.2 and 6.7 mol% in Er2O3), expose that Er3+:YSZ is a stable antiferromagnetic semiconductor (\(S=\frac{3}{2}\) per Er+3) bearing a rather wide band gap of about 5 eV. All results presented and discussed in current report rely on spin–polarized density functional theory (DFT) within the spin resolved generalized gradient approximation (SGGA) for the pure Perdew, Burke and Ernzerhof exchange–correlation functional (PBE) and hybrid version widely referred as PBE0. According to our knowledge, this is the first time that the magnetic properties of Er3+: YSZ materials are reported for any Er+3 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pearton SJ, Abernathy CR, Norton DP et al (2003) Advances in wide bandgap materials for semiconductor spintronics. Mater Sci Eng R Rep 40:137–168

    Google Scholar 

  2. Kikkawa JM, Awschalom DD (2000) All-optical magnetic resonance in semiconductors. Science 287:473–476

    CAS  Google Scholar 

  3. Pearton SJ, Abernathy CR, Overberg ME et al (2003) Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys 93:1–13

    CAS  Google Scholar 

  4. Harima H (2004) Raman studies on spintronics materials based on wide bandgap semiconductors. J Phys Condens Matter 16:S5653

    CAS  Google Scholar 

  5. Akinaga H, Ohno H (2002) Semiconductor spintronics. IEEE Trans Nanotechnol 1:19–31

    Google Scholar 

  6. Jayachandraiah C, Sivakumar K, Divya A, Krishnaiah G (2016) Erbium induced magnetic properties of Er/ZnO nanoparticles. AIP Conf Proc 1731:050116

    Google Scholar 

  7. Jungwirth T, Sinova J, Manchon A et al (2018) The multiple directions of antiferromagnetic spintronics. Nat Phys 14:200–203

    CAS  Google Scholar 

  8. Wolf SA, Awschalom DD, Buhrman RA et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    CAS  Google Scholar 

  9. Pearton SJ, Abernathy CR, Thaler GT et al (2004) Wide bandgap GaN-based semiconductors for spintronics. J Phys: Condens Matter 16:209–245

    Google Scholar 

  10. Grün H, Berer T, Bauer-Marschallinger J et al (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323–410

    Google Scholar 

  11. Furdyna JK (1988) Diluted magnetic semiconductors. J Appl Phys 64:29–64

    Google Scholar 

  12. Ueno K, Nakamura S, Shimotani H et al (2008) Electric-field-induced superconductivity in an insulator. Nat Mater 7:855–858

    CAS  Google Scholar 

  13. Ahn CH, Triscone JM, Mannhart J (2003) Electric field effect in correlated oxide systems. Nature 424:1015–1018

    CAS  Google Scholar 

  14. Furdyna JK (1986) Diluted magnetic semiconductors: Issues and opportunities. J Vac Sci Technol A 4:2002–2009

    CAS  Google Scholar 

  15. Hota RL, Tripathi GS, Misra PK (1994) Theory of magnetization in IV-VI based diluted magnetic semiconductors. J Appl Phys 75:5737–5739

    CAS  Google Scholar 

  16. Berciu M, Jankó B (2003) Nanoscale Zeeman localization of charge carriers in diluted magnetic semiconductor-permalloy hybrids. Phys Rev Lett 90:4

    Google Scholar 

  17. Samanta A, Goswami MN, Mahapatra PK (2018) Magnetic and electric properties of Ni-doped ZnO nanoparticles exhibit diluted magnetic semiconductor in nature. J Alloy Compd 730:399–407

    CAS  Google Scholar 

  18. Gu G, Zhao G, Lin C et al (2018) Asperomagnetic order in diluted magnetic semiconductor (Ba, Na)(Zn, Mn)2As2. Appl Phys Lett 112:032402

    Google Scholar 

  19. Heiroth S, Ghisleni R, Lippert T et al (2011) Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition. Acta Mater 59:2330–2340

    CAS  Google Scholar 

  20. Ostanin S, Craven AJ, McComb DW et al (2000) Effect of relaxation on the oxygen K-edge electron energy-loss near-edge structure in yttria-stabilized zirconia. Phys Rev B Condens Matter Mater Phys 62:14728–14735

    CAS  Google Scholar 

  21. Götsch T, Bertel E, Menzel A et al (2018) Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia. Phys Rev Mater 2:1–15

    Google Scholar 

  22. Xia X, Oldman R, Catlow R (2009) Computational modeling study of bulk and surface of yttria-stabilized cubic zirconia. Chem Mater 21:3576–3585

    CAS  Google Scholar 

  23. Nicoloso N, Lobert A, Leibold B (1992) Optical absorption studies of tetragonal yttria-stabilized zirconia. Sens Actuators 8:253–256

    CAS  Google Scholar 

  24. Parkes MA, Tompsett DA, D’Avezac M et al (2016) The atomistic structure of yttria stabilised zirconia at 6.7 mol%: an ab initio study. Phys Chem Chem Phys 18:31277–31285

    CAS  Google Scholar 

  25. Marcaud G, Matzen S, Alonso-Ramos C et al (2018) High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications. Phys Rev Mater 2:35202

    CAS  Google Scholar 

  26. Marcaud G, Serna S, Panaghiotis K et al (2020) Third-order nonlinear optical susceptibility of crystalline oxide yttria-stabilized zirconia. Photonics Res 8:110–120

    CAS  Google Scholar 

  27. Chislov AS, Borik MA, Kulebyakin AV et al (2019) Comparison of mechanical properties of zirconia crystals partially stabilized with yttria and gadolinia. J Phys Conf Ser 1347:012059

    CAS  Google Scholar 

  28. Bogicevic A, Wolverton C (2003) Nature and strength of defect interactions in cubic stabilized zirconia. Phys Rev B Condens Matter Mater Phys 67:024106

    Google Scholar 

  29. Stapper G, Bernasconi M, Nicoloso N, Parrinello M (1999) Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia. Phys Rev B Condens Matter Mater Phys 59:797–810

    CAS  Google Scholar 

  30. Qin R, Zeng HC (2019) Confined transformation of UiO-66 nanocrystals to yttria-stabilized zirconia with hierarchical pore structures for catalytic applications. Adv Func Mater 29:1903264

    Google Scholar 

  31. Meng X, Xu J, Zhu J et al (2020) Porous yttria-stabilized zirconia ceramics with low thermal conductivity via a novel foam-gelcasting method. J Mater Sci 55:15106–15116https://doi.org/10.1111/jace.12074

    Article  CAS  Google Scholar 

  32. Badwal SPS (1992) Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 52:23–32

    CAS  Google Scholar 

  33. Dixon JM, LaGrange LD, Merten U et al (1963) Electrical resistivity of stabilized zirconia at elevated temperatures. J Electrochem Soc 110:276

    CAS  Google Scholar 

  34. Yoshimura M (1988) Phase stability of zirconia. Am Ceram Soc Bull 67:1950–1955

    CAS  Google Scholar 

  35. Cross M, Varhue W (2003) Visible light emission from erbium doped yttria stabilized zirconia. Mater Res Soc Symp Proc 789:239–244

    CAS  Google Scholar 

  36. Greenberg E, Katz G, Reisfeld R et al (1982) Radiative transition probabilities of Er3+ in yttria stabilized cubic zirconia crystals. J Chem Phys 77:4797–4803

    CAS  Google Scholar 

  37. Yugami H, Koike A, Ishigame M, Suemoto T (1991) Relationship between local structures and ionic conductivity in ZrO2-Y2O3 studied by site-selective spectroscopy. Phys Rev B 44:9214

    CAS  Google Scholar 

  38. Merino RI, Orera VM, Cases R, Chamarro MA (1991) Spectroscopic characterization of Er3+ in stabilized zirconia single crystals. J Phys Condens Matter 3:8491–8502

    CAS  Google Scholar 

  39. Arashi H (1972) Absorption spectrum of Er3+ ions in cubic zirconia. Physica Status Solidi (a) 10:107–112

    CAS  Google Scholar 

  40. Ryabochkina PA, Sidorova NV, Ushakov SN, Lomonova EE (2014) Spectroscopic properties of erbium-doped yttria-stabilised zirconia crystals. Quantum Electron 44:135–137

    Google Scholar 

  41. Savoini B, Muoz-Santiuste JE, González R et al (2001) Upconversion luminescence of Er3+-doped YSZ single crystals. J Alloy Compd 323–324:748–752

    Google Scholar 

  42. Ruiz-Caridad A, Marcaud G, Ramirez JM et al (2020) Erbium-doped yttria-stabilised zirconia thin films grown by pulsed laser deposition for photonic applications. Thin Solid Films 693:137706

    CAS  Google Scholar 

  43. Wang X, Tan X, Xu S et al (2020) Preparation and up-conversion luminescence of Er-doped yttria stabilized zirconia single crystals. J Lumin 219:116896

    CAS  Google Scholar 

  44. Ruiz-Caridad A, Collin S, Alonso-Ramos C et al (2020) Erbium-doped yttria-stabilized zirconia thin layers for photonic applications. IEEE J Quantum Electron 56:1–7

    Google Scholar 

  45. Lin T, Zhang X, Xu J et al (2013) Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films. Appl Phys Lett 103:181906

    Google Scholar 

  46. Wu J, Coffer JL (2007) Strongly emissive erbium-doped tin oxide nanofibers derived from sol gel/electrospinning methods. J Phys Chem C 111:16088–16091

    CAS  Google Scholar 

  47. Aleksanyan E, Kirm M, Feldbach E et al (2017) Luminescence properties of Er3+ doped zirconia thin films and ZrO2/Er2O3 nanolaminates grown by atomic layer deposition. Opt Mater 74:27–33

    CAS  Google Scholar 

  48. Parkes MA, Refson K, Davezac M et al (2015) Chemical descriptors of yttria-stabilized zirconia at low defect concentration: an ab initio study. J Phys Chem A 119:6412–6420

    CAS  Google Scholar 

  49. Ioffe AI, Rutman DS, Karpachov SV (1978) On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim Acta 23:141–142

    CAS  Google Scholar 

  50. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  52. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    CAS  Google Scholar 

  53. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186

    CAS  Google Scholar 

  54. Kresse G, Furthmiiller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    CAS  Google Scholar 

  55. Pack JD, Monkhorst HJ (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  56. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  57. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Google Scholar 

  58. Allouche A (2012) Software News and Updates Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182

    Google Scholar 

  59. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J Phys Condens Matter 9:767–808

    CAS  Google Scholar 

  60. Peng H, Scanlon DO, Stevanovic V et al (2013) Convergence of density and hybrid functional defect calculations for compound semiconductors. Phys Rev B Conden Matter Mater Phys 88:1–7

    Google Scholar 

  61. Denawi H, Koudia M, Hayn R et al (2018) On-surface synthesis of spin crossover polymeric chains. J Phys Chem C 122:15033–15040

    CAS  Google Scholar 

  62. Denawi H, Abel M, Hayn R (2019) Magnetic polymer chains of transition metal atoms and zwitterionic quinone. J Phys Chem C 123:4582–4589

    CAS  Google Scholar 

  63. Njifon IC, Bertolus M, Hayn R, Freyss M (2018) Electronic structure investigation of the bulk properties of uranium-plutonium mixed oxides (U, Pu)O2. Inorg Chem 57:10974–10983

    CAS  Google Scholar 

  64. Saoudi H, Denawi H, Benali A et al (2018) Preparation and electron correlation effects of the perovskite La0.8Ca0.1Pb0.1Fe1−xCoxO3 (0 ≤ x ≤ 0.20). Solid State Ionics 324:157–162

    CAS  Google Scholar 

  65. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52:5467–5471

    Google Scholar 

  66. Dovesi R, Erba A, Orlando R et al (2018) Quantum-mechanical condensed matter simulations with crystal. Wiley Interdiscip Rev Comput Mol Sci 8:e1360

    Google Scholar 

  67. French RH, Glass SJ, Ohuchi FS et al (1994) Experimental anti theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B 49:5133

    CAS  Google Scholar 

  68. Králik B, Chang EK, Louie SG (1998) Structural properties and quasiparticle band structure of zirconia. Phys Rev B Condens Matter Mater Phys 57:7027–7036

    Google Scholar 

  69. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    CAS  Google Scholar 

  70. Ricca C, Ringuedé A, Cassir M et al (2015) Revealing the properties of the cubic ZrO2 (111) surface by periodic DFT calculations: reducibility and stabilization through doping with aliovalent Y2O3. RSC Adv 5:13941–13951

    CAS  Google Scholar 

  71. Mohamad R, Chen J, Ruterana P (2020) The effect of N-vacancy and in aggregation on the properties of InAlN. Comput Mater Sci 172:109384

    CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocations 2019-2020 2020-2021 [A0040807031] made by GENCI (Grand Equipement National de Calcul Intensif). We also acknowledge the “Direction du Numérique” of the “Université de Pau et des Pays de l’Adour” and the Mésocentre de Calcul Intensif Aquitain (MCIA) for the computing facilities provided. H.D. thanks ANR for the one-year postdoc position in project FOIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rérat.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denawi, H., Karamanis, P. & Rérat, M. Electronic and magnetic properties of yttria-stabilized zirconia (6.7 mol% in Y2O3) doped with Er3+ ions from first-principle computations. J Mater Sci 56, 8014–8023 (2021). https://doi.org/10.1007/s10853-021-05793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05793-6

Navigation