Van der waals BP/InSe heterojunction for tunneling field-effect transistors


Introducing heterogeneous architecture is a prospective way to improve tunneling field-effect transistors (TFETs). We investigate the van der Waals (vdW) heterojunction based on monolayer black phosphorene and indium selenide (BP/InSe heterojunction) and the double-gated 10-nm TFETs based on the vdW BP/InSe heterojunction with the contact length and position by using the ab-initio quantum transport simulations. The vdW BP/InSe heterojunction shows a type-II band edge alignment. The optimal vdW BP/InSe heterojunction TFETs have a 1-nm-length BP/InSe heterojunction at the channel’s left and right sites (1L and 1R for short). Novelty, the BP/InSe heterojunction TFETs with 1L and 1R configurations are n- and p-type devices, respectively, and corresponding high on-currents of 240 and 408 μA/μm are obtained for high-performance application (off-current: 0.1 μA/μm) at a very low supply voltage (0.3 V).

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

source to drain tunneling window of Vds = 0.3 V; the isovalue of the transmission eigenstates is 0.05 au

Figure 6

source to drain tunneling window of Vds = 0.3 V


  1. 1

    Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337.

    CAS  Article  Google Scholar 

  2. 2

    Lv YW, Qin WJ, Wang CL, Liao L, Liu XQ (2019) Recent advances in low-dimensional heterojunction-based tunnel field effect transistors. Adv Electron Mater 5:1800569.

    CAS  Article  Google Scholar 

  3. 3

    Seabaugh AC, Zhang Q (2010) Low-voltage tunnel transistors for beyond cmos logic. Proc IEEE 98:2095–2110.

    CAS  Article  Google Scholar 

  4. 4

    Yoon YJ, Seo JH, Cho S, Kwon HI, Lee JH, Kang IM (2016) Sub-10 nm Ge/GaAs heterojunction-based tunneling field-effect transistor with vertical tunneling operation for ultra-low-power applications. J Semicond Tech Sci 16:172–178.

    Article  Google Scholar 

  5. 5

    Lattanzio L, De Michielis L, Ionescu AM (2012) Complementary germanium electron-hole bilayer tunnel fet for sub-0.5-v operation. IEEE Electron Dev Lett 33:167–169.

    CAS  Article  Google Scholar 

  6. 6

    Padilla JL, Medina-Bailon CM, Marquez C, Sampedro C, Donetti L, Gamiz F, Ionescu AM (2018) Gate leakage tunneling impact on the inas/gasb heterojunction electron-hole bilayer tunneling field-effect transistor. IEEE Tran Electron Dev 65:4679–4686.

    CAS  Article  Google Scholar 

  7. 7

    Shih C, Chien ND (2011) Sub-10-nm tunnel field-effect transistor with graded si/ge heterojunction. IEEE Electron Dev Lett 32:1498–1500.

    CAS  Article  Google Scholar 

  8. 8

    Toh E-H, Wang GH, Chan L, Samudra G, Yeo Y-C (2007) Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction. Appl Phys Lett 91:243505.

    CAS  Article  Google Scholar 

  9. 9

    Roy T, Tosun M, Cao X, Fang H, Lien D-H, Zhao P, Chen Y-Z, Chueh Y-L, Guo J, Javey A (2015) Dual-gated mos2/wse2 van der waals tunnel diodes and transistors. ACS Nano 9:2071–2079.

    CAS  Article  Google Scholar 

  10. 10

    Roy T, Tosun M, Hettick M, Ahn GH, Hu C, Javey A (2016) 2D–2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl Phys Lett 108:083111.

    CAS  Article  Google Scholar 

  11. 11

    Jiang XW, Luo JW, Li SS, Wang LW (2015) How good is mono-layer transition-metal dichalcogenide tunnel field-effect transistors in sub-10 nm? An ab initio simulation study. In: Proceedings of 2015 IEEE international electron devices meeting (IEDM) Washington, DC, USA

  12. 12

    Yan X, Liu CS, Li C, Bao WZ, Ding SJ, Zhang DW, Zhou P (2017) Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13:1701478.

    CAS  Article  Google Scholar 

  13. 13

    Sarkar D, Xie XJ, Liu W, Cao W, Kang JH, Gong YJ, Kraemer S, Ajayan PM, Banerjee K (2015) A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526:91–95.

    CAS  Article  Google Scholar 

  14. 14

    Szabo A, Koester SJ, Luisier M (2015) Ab-initio simulation of van der waals mote2-sns2 heterotunneling fets for low-power electronics. IEEE Electron Dev Lett 36:514–516.

    CAS  Article  Google Scholar 

  15. 15

    Li M, Esseni D, Nahas JJ, Jena D, Xing HG (2015) Two-dimensional heterojunction interlayer tunneling field effect transistors (thin-tfets). IEEE J Electron Dev Soc 3:206–213.

    CAS  Article  Google Scholar 

  16. 16

    Li H, Lu J (2019) Sub-10 nm vertical tunneling transistors based on layered black phosphorene homojunction. Appl Surf Sci 465:895–901

    CAS  Article  Google Scholar 

  17. 17

    Li H, Shi B, Pan Y, Li J, Xu L, Zhang X, Pan F, Lu J (2018) Sub-5 nm monolayer black phosphorene tunneling transistors. Nanotechnology 29:485202

    Article  Google Scholar 

  18. 18

    Li H, Tie J, Li J, Ye M, Zhang H, Zhang X, Pan Y, Wang Y, Quhe R, Pan F, Lu J (2018) High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res 11:2658–2668.

    CAS  Article  Google Scholar 

  19. 19

    Liu F, Wang J, Guo H (2016) Impact of edge states on device performance of phosphorene heterojunction tunneling field effect transistors. Nanoscale 8:18180–18186.

    CAS  Article  Google Scholar 

  20. 20

    Kim S, Myeong G, Park J, Watanabe K, Taniguchi T, Cho S (2020) Monolayer hexagonal boron nitride tunnel barrier contact for low-power black phosphorus heterojunction tunnel field-effect transistors. Nano Lett 20:3963–3969.

    CAS  Article  Google Scholar 

  21. 21

    Kim S, Myeong G, Shin W, Lim H, Kim B, Jin T, Chang S, Watanabe K, Taniguchi T, Cho S (2020) Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat Nanotechnol 15:203–206.

    CAS  Article  Google Scholar 

  22. 22

    Wu P, Ameen T, Zhang HR, Bendersky LA, Ilatikhameneh H, Klimeck G, Rahman R, Davydov AV, Appenzeller J (2019) Complementary black phosphorus tunneling field-effect transistors. ACS Nano 13:377–385.

    CAS  Article  Google Scholar 

  23. 23

    Li H, Xu PP, Xu L, Zhang ZY, Lu J (2019) Negative capacitance tunneling field effect transistors based on monolayer arsenene, antimonene, and bismuthene. Semicond Sci Technol 34:085006.

    CAS  Article  Google Scholar 

  24. 24

    Chang J (2018) Novel antimonene tunneling field-effect transistors using an abrupt transition from semiconductor to metal in monolayer and multilayer antimonene heterostructures. Nanoscale 10:13652–13660.

    CAS  Article  Google Scholar 

  25. 25

    Li H, Xu PP, Lu J (2019) Sub-10 nm tunneling field-effect transistors based on monolayer group IV mono-chalcogenides. Nanoscale 11:23392–23401.

    CAS  Article  Google Scholar 

  26. 26

    Xu PP, Liang JK, Li H, Liu FB, Tie J, Jiao ZW, Luo J, Lu J (2020) Device performance limits and negative capacitance of monolayer GeSe and GeTe tunneling field effect transistors. RSC Adv 10:16071–16078.

    CAS  Article  Google Scholar 

  27. 27

    Li H, Liang JK, Xu PP, Luo J, Liu FB (2020) Vertically stacked SnSe homojunctions and negative capacitance for fast low-power tunneling transistors. RSC Adv 10:20801–20808.

    CAS  Article  Google Scholar 

  28. 28

    Wang W, Sun Y, Wang H, Xu HS, Xu M, Jiang ST, Yue GS (2016) Investigation of light doping and hetero gate dielectric carbon nanotube tunneling field-effect transistor for improved device and circuit-level performance. Semicond Sci Tech 31:035002.

    CAS  Article  Google Scholar 

  29. 29

    Tahaei SH, Ghoreishi SS, Yousefi R, Aderang H (2019) A computational study of a heterostructure tunneling carbon nanotube field-effect transistor. J Electron Mater 48:7048–7054.

    CAS  Article  Google Scholar 

  30. 30

    Tamersit K (2020) Computational study of p-n carbon nanotube tunnel field-effect transistor. IEEE Trans Electron Dev 67:704–710.

    CAS  Article  Google Scholar 

  31. 31

    Lu SC, Zhu MM, WJ, (2016) Novel vertical hetero- and homo-junction tunnel field-effect transistors based on multi-layer 2D crystals. 2D Mater 3:011010.

    CAS  Article  Google Scholar 

  32. 32

    Nasir SNFM, Ullah H, Ebadi M, Tahir AA, Sagu JS, Mat Teridi MA (2017) New insights into se/bivo4 heterostructure for photoelectrochemical water splitting: a combined experimental and dft study. J Phys Chem C 121:6218–6228.

    CAS  Article  Google Scholar 

  33. 33

    Wei Y, Wang F, Zhang W, Zhang X (2019) The electric field modulation of electronic properties in a type-II phosphorene/PbI2 van der Waals heterojunction. Phys Chem Chem Phys 21:7765–7772.

    CAS  Article  Google Scholar 

  34. 34

    El Mouhi R, El Khattabi S, Hachi M, Fitri A, Benjelloun AT, Benzakour M, McHarfi M, Bouachrine M (2019) DFT and TD-DFT calculations on thieno[2,3-b]indole-based compounds for application in organic bulk heterojunction (BHJ) solar cells. Res Chem Intermediat 45:1327–1340.

    CAS  Article  Google Scholar 

  35. 35

    Lacerda LHdS, de Lazaro SR (2017) Isomorphic substitution and intermediary energy levels: A new application of DFT modelling and semiconductor theory to describe p–n type junctions interface in heterostructures. Phys Status Solidi B 254:1700119.

    Article  Google Scholar 

  36. 36

    Zhao X, Bo M, Huang Z, Zhou J, Peng C, Li L (2018) Heterojunction bond relaxation and electronic reconfiguration of WS2- and MoS2-based 2D materials using BOLS and DFT. Appl Surf Sci 462:508–516.

    CAS  Article  Google Scholar 

  37. 37

    Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377.

    CAS  Article  Google Scholar 

  38. 38

    Qiao J, Kong X, Hu Z-X, Yang F, Ji W (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:4475.

    CAS  Article  Google Scholar 

  39. 39

    Mudd GW, Svatek SA, Ren T, Patane A, Makarovsky O, Eaves L, Beton PH, Kovalyuk ZD, Lashkarev GV, Kudrynskyi ZR, Dmitriev AI (2013) Tuning the bandgap of exfoliated inse nanosheets by quantum confinement. Adv Mater 25:5714–5718.

    CAS  Article  Google Scholar 

  40. 40

    Bandurin DA, Tyurnina AV, Yu GL, Mishchenko A, Zolyomi V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeitler U, Novoselov KS, Patane A, Eaves L, Grigorieva IV, Fal’ko VI, Geim AK, Cao Y (2017) High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol 12:223–227.

    CAS  Article  Google Scholar 

  41. 41

    QuantumATK, version P-2019.03.

  42. 42

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG, Lee ME, Chill ST, Rasmussen F, Penazzi G, Corsetti F, Ojanpera A, Jensen K, Palsgaard MLN, Martinez U, Blom A, Brandbyge M, Stokbro K (2020) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Mater 32:015901.

    CAS  Article  Google Scholar 

  43. 43

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 78:3865

    Article  Google Scholar 

  44. 44

    Monkhorst HJ (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  45. 45

    Liang Y, Yang L (2015) Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Phys Rev Lett 114:063001.

    Article  Google Scholar 

  46. 46

    Gao S, Yang L (2017) Renormalization of the quasiparticle band gap in doped two-dimensional materials from many-body calculations. Phys Rev B 96:155410

    Article  Google Scholar 

  47. 47

    Zhang Y, Chang T-R, Zhou B, Cui Y-T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H-T, Mo S-K, Hussain Z, Bansil A, Shen Z-X (2013) Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9:111.

    CAS  Article  Google Scholar 

  48. 48

    Quhe R, Qiu L, Zhang Q, Wang Y, Han Z, Jing L, Dong C, Kai L, Yu Y, Lun D, Feng P, Ming L, Jing L (2018) Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys Rev Appl 10:024022

    CAS  Article  Google Scholar 

  49. 49

    Desai SB, Madhvapathy SR, Sachid AB, Llinas JP, Wang Q, Ahn GH, Pitner G, Kim MJ, Bokor J, Hu C (2016) MoS2 transistors with 1-nanometer gate lengths. Science 354:99

    CAS  Article  Google Scholar 

  50. 50

    Pan Y, Yang D, Wang Y, Meng Y, Han Z, Quhe R, Zhang X, Li J, Guo W, Li Y (2017) Schottky barriers in bilayer phosphorene transistors, acs appl. Mater Inter 9:12694–12705

    CAS  Article  Google Scholar 

  51. 51

    Pan Y, Wang Y, Ye M, Quhe R, Zhong H, Song Z, Peng X, Yu D, Yang J, Shi J (2016) Monolayer phosphorene-metal contacts. Chem Mater 28:2100–2109

    CAS  Article  Google Scholar 

  52. 52

    Zhang X, Pan Y, Ye M, Quhe R, Wang Y, Guo Y, Zhang H, Dan Y, Song Z, Li J, Yang J, Guo W, Lu J (2017) Three-layer phosphorene-metal interfaces. Nano Res 11:707–721

    Article  Google Scholar 

  53. 53

    Gao A, Lai J, Wang Y, Zhu Z, Zeng J, Yu G, Wang N, Chen W, Cao T, Hu W, Sun D, Chen X, Miao F, Shi Y, Wang X (2019) Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol 14:217–222.

    CAS  Article  Google Scholar 

  54. 54

    Allec SI, Wong BM (2016) Inconsistencies in the electronic properties of phosphorene nanotubes: new insights from large-scale dft calculations. J Phys Chem Lett 7:4340–4345.

    CAS  Article  Google Scholar 

  55. 55

    Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  56. 56

    Ding YM, Shi JJ, Xia CX, Zhang M, Du J, Huang P, Wu M, Wang H, Cen YL, Pan SH (2017) Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure. Nanoscale 9:14682–14689.

    CAS  Article  Google Scholar 

  57. 57

    Lv QS, Yan FG, Mori N, Zhu WK, Hu C, Kudrynskyi ZR, Kovalyuk ZD, Patane A, Wang KY (2020) Interlayer band-to-band tunneling and negative differential resistance in van der waals BP/InSe field-effect transistors. Adv Funct Mater 30:1910713.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Nos. 11704008 and 91964101), Beijing Natural Science Foundation of China (No. 4212046), the Support Plan of Yuyou Youth, Yuyou Innovation Team, and the fund of high-level characteristic research direction from North China University of Technology.

Author information



Corresponding authors

Correspondence to Hong Li or Jing Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Kevin Jones.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, Q., Xu, P. et al. Van der waals BP/InSe heterojunction for tunneling field-effect transistors. J Mater Sci 56, 8563–8574 (2021).

Download citation