Fabrication of reduced graphene oxide/manganese oxide ink for 3D-printing technology on the application of high-performance supercapacitors


The low energy density of supercapacitors currently limits their widespread applicability. With the development of 3D printing technology in the field of energy storage, fine electrode structures can be designed to overcome this limitation. This paper reports an ink consisting of α-MnO2 nanorods, reduced graphene oxide, and pluronic F127 and employed it for the extrusion-based 3D printing of supercapacitor electrodes. The 3D-printed 1-layer electrode achieved a mass-specific capacitance of 422 F g−1 at a current density of 0.1 A g−1, and the as-prepared full-cell supercapacitor based on such electrode, its energy density reached 19.35 Wh kg−1, corresponding to a power density of 50 W kg−1. The extrusion 3D printing method also allows for the fabrication of multiple electrode layers, and the 3D-printed electrodes were demonstrated as capable of practical applications such as powering LEDs and charging a mobile phone. The proposed 3D printing technology for preparing supercapacitors can quickly and economically prepare supercapacitors with special structures in large quantities, providing a method for large-scale applications of supercapacitors, and also provides some inspiration for the structure of other energy storage devices such as ion batteries.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1

    Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498

    CAS  Google Scholar 

  2. 2

    Nomoto S, Nakata H, Yoshioka K, Yoshida A, Yoneda H (2001) Advanced capacitors and their application. J Power Sources 97–8:807–811

    Google Scholar 

  3. 3

    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    CAS  Google Scholar 

  4. 4

    Gao TT, Zhou Z, Yu JY, Zhao J, Wang GL, Cao DX, Ding B, Li YJ (2019) 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv Energy Mater 9(8):1802578

    Google Scholar 

  5. 5

    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614

    CAS  Google Scholar 

  6. 6

    Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    CAS  Google Scholar 

  7. 7

    Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29(9):1603486

    Google Scholar 

  8. 8

    Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45(10):2740–2755

    CAS  Google Scholar 

  9. 9

    Paxton N, Smolan W, Boeck T, Melchels F, Groll J, Jungst T (2017) Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication 9(4):044107

    Google Scholar 

  10. 10

    Naficy S, Jalili R, Aboutalebi SH, Gorkin RA, Konstantinov K, Innis PC, Spinks GM, Poulin P, Wallace GG (2014) Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 1(3):326–331

    CAS  Google Scholar 

  11. 11

    Muller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7(3):035006

    Google Scholar 

  12. 12

    Zhang F, Wei M, Viswanathan VV, Swart B, Shao YY, Wu G, Zhou C (2017) 3D printing technologies for electrochemical energy storage. Nano Energy 40:418–431

    CAS  Google Scholar 

  13. 13

    Wang XL, Liu J (2016) Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines 7(12):206

    Google Scholar 

  14. 14

    Farahani RD, Dube M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 28(28):5794–5821

    CAS  Google Scholar 

  15. 15

    Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ (2006) Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheol Acta 45(3):239–249

    CAS  Google Scholar 

  16. 16

    Yang GL, Li FX, Wang LJ, Row KH, Liu HY, Bai LG, Cao WM, Zhu T (2008) Synthesis, characteristics and evaluation of a new monolithic silica column prepared from copolymer pluronic F127. Chromatographia 68(1–2):27–31

    CAS  Google Scholar 

  17. 17

    Zhao XC, Wang AQ, Yan JW, Sun GQ, Sun LX, Zhang T (2010) Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem Mater 22(19):5463–5473

    CAS  Google Scholar 

  18. 18

    Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721

    CAS  Google Scholar 

  19. 19

    McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    CAS  Google Scholar 

  20. 20

    Alvarez P, Blanco C, Santamaria R, Blanco P, Gonzalez Z, Fernandez-Garcia L, Sierra U, Granda M, Paez A, Menendez R (2015) Tuning graphene properties by a multi-step thermal reduction process. Carbon 90:160–163

    CAS  Google Scholar 

  21. 21

    Zhi MJ, Xiang CC, Li JT, Li M, Wu NQ (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88

    CAS  Google Scholar 

  22. 22

    Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375

    CAS  Google Scholar 

  23. 23

    Wang X, Li YD (2002) Rational synthesis of alpha-MnO2 single-crystal nanorods. Chem Commun 7:764–765

    Google Scholar 

  24. 24

    Guo Y, Dun CC, Xu JW, Mu JK, Li PY, Gu LW, Hou CY, Hewitt CA, Zhang QH, Li YG, Carroll DL, Wang HZ (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44):1702645

    Google Scholar 

  25. 25

    Yang JH, Yang XF, Zhong YL, Ying JY (2015) Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage. Nano Energy 13:702–708

    CAS  Google Scholar 

  26. 26

    Du W, Xu XQ, Zhang D, Lu QY, Gao F (2015) Green synthesis of MnO (x) nanostructures and studies of their supercapacitor performance. Sci China Chem 58(4):627–633

    CAS  Google Scholar 

  27. 27

    Ma PP, Lei N, Yu B, Liu YK, Jiang GH, Dai JM, Li SH, Lu QL (2019) Flexible supercapacitor electrodes based on carbon cloth-supported LaMnO3/MnO nano-arrays by one-step electrodeposition. Nanomaterials 9(12):1617

    Google Scholar 

  28. 28

    Qu DY, Feng XK, Wei X, Guo LP, Cai HP, Tang HL, Xie ZZ (2017) Synthesis of MnO nano-particle@flourine doped carbon and its application in hybrid supercapacitor. Appl Surf Sci 413:344–350

    CAS  Google Scholar 

  29. 29

    Sun YM, Hu XL, Luo W, Xia FF, Huang YH (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23(19):2436–2444

    CAS  Google Scholar 

  30. 30

    Ranjith KS, Raju GSR, Chodankar NR, Ghoreishian SM, Kwak CH, Huh YS, Han YK (2020) Electroactive ultra-thin rGO-enriched FeMoO4 nanotubes and MnO2 nanorods as electrodes for high-performance all-solid-state asymmetric supercapacitors. Nanomaterials 10(2):289

    CAS  Google Scholar 

  31. 31

    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111(40):14925–14931

    CAS  Google Scholar 

  32. 32

    Yan WB, Kim JY, Xing WD, Donavan KC, Ayvazian T, Penner RM (2012) Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem Mater 24(12):2382–2390

    CAS  Google Scholar 

  33. 33

    Zhang MM, Song ZX, Liu H, Ma TJ (2020) Biomass-derived highly porous nitrogen-doped graphene orderly supported NiMn2O4 nanocrystals as efficient electrode materials for asymmetric supercapacitors. Appl Surf Sci 507:145065

    CAS  Google Scholar 

  34. 34

    Xia XH, Chao DL, Zhang YQ, Zhan JY, Zhong Y, Wang XL, Wang YD, Shen ZX, Tu JP, Fan HJ (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12(22):3048–3058

    CAS  Google Scholar 

  35. 35

    Wang SL, Wang Q, Zeng W, Wang M, Ruan LM, Ma YA (2019) A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode. Nano-Micro Lett 11(1):70

    Google Scholar 

  36. 36

    Dong LB, Yang W, Yang W, Wang CY, Li Y, Xu CJ, Wan SW, He FR, Kang FY, Wang GX (2019) High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage. Nano-Micro Lett 11(1):94

    Google Scholar 

  37. 37

    Liu JL, Wang J, Xu CH, Jiang H, Li CZ, Zhang LL, Lin JY, Shen ZX (2018) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5(1):1700322

    Google Scholar 

  38. 38

    Yoo HD, Jang JH, Ryu JH, Park Y, Oh SM (2014) Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors. J Power Sources 267:411–420

    CAS  Google Scholar 

  39. 39

    Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106(2):325–333

    CAS  Google Scholar 

  40. 40

    Farzana R, Hassan K, Sahajwalla V (2019) Manganese oxide synthesized from spent Zn–C battery for supercapacitor electrode application. Sci Rep 9:8982

    Google Scholar 

  41. 41

    Pan JM, Sun HY, Yan XH, Zhong WQ, Shen W, Zhang YH, Cheng XN (2020) Cube Fe3O4 nanoparticles embedded in three-dimensional net porous carbon from silicon oxycarbide for high performance supercapacitor. Ceram Int 46(16):24805–24815

    CAS  Google Scholar 

  42. 42

    Yang GJ, Park SJ (2018) MnO2 and biomass-derived 3D porous carbon composites electrodes for high performance supercapacitor applications. J Alloy Compd 741:360–367

    CAS  Google Scholar 

  43. 43

    Edison T, Atchudan R, Lee YR (2019) Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction. Int J Hydrog Energy 44(4):2323–2329

    Google Scholar 

  44. 44

    Wang QH, Jiao LF, Du HM, Wang YJ, Yuan HT (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106

    CAS  Google Scholar 

  45. 45

    Ding B, Wu XL (2020) Transition metal oxides anchored on graphene/carbon nanotubes conductive network as both the negative and positive electrodes for asymmetric supercapacitor. J Alloy Compd 842:8

    Google Scholar 

  46. 46

    Samuel E, Joshi B, Park C, Aldalbahi A, Rahaman M, Yoon SS (2020) Supersonically sprayed rGO/ZIF8 on nickel nanocone substrate for highly stable supercapacitor electrodes. Electrochim Acta 362:137154

    Google Scholar 

  47. 47

    Murali S, Dammala PK, Rani B, Santhosh R, Jadhao C, Sahu NK (2020) Polyol mediated synthesis of anisotropic ZnO nanomaterials and composite with rGO: application towards hybrid supercapacitor. J Alloy Compd 844:156149

    Google Scholar 

  48. 48

    Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Fulari VJ, Lokhande CD (2009) A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. J Alloy Compd 484(1–2):218–221

    CAS  Google Scholar 

  49. 49

    Wu YZ, Liu SQ, Wang HY, Wang XW, Zhang X, Jin GH (2013) A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim Acta 90:210–218

    CAS  Google Scholar 

  50. 50

    Lee JW, Hall AS, Kim JD, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24(6):1158–1164

    CAS  Google Scholar 

  51. 51

    Wang B, Park J, Wang CY, Ahn H, Wang GX (2010) Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim Acta 55(22):6812–6817

    CAS  Google Scholar 

  52. 52

    Guo CY, Ma HT, Zhang QT, Li MF, Jiang HR, Chen CZ, Wang SF, Min DY (2020) Nano MnO2 radially grown on lignin-based carbon fiber by one-step solution reaction for supercapacitors with high performance. Nanomaterials 10(3):594

    CAS  Google Scholar 

  53. 53

    Sahoo RK, Das A, Singh S, Lee D, Singh SK, Mane RS, Yun JM, Kim KH (2019) Synthesis of the 3D porous carbon-manganese oxide (3D-C@MnO) nanocomposite and its supercapacitor behavior study. Prog Nat Sci Mater Int 29(4):410–415

    CAS  Google Scholar 

  54. 54

    Wen J, Chen XP, Huang ML, Yang W, Deng J (2019) Core–shell-structured MnO2@carbon spheres and nitrogen-doped activated carbon for asymmetric supercapacitors with enhanced energy density. J Chem Sci 132(1):6

    Google Scholar 

  55. 55

    Attias R, Sharon D, Borenstein A, Malka D, Hana O, Luski S, Aurbach D (2017) Asymmetric supercapacitors using chemically prepared MnO2 as positive electrode materials. J Electrochem Soc 164(9):A2231–A2237

    CAS  Google Scholar 

  56. 56

    Li B, Zhang XH, Dou JH, Zhang PX (2020) Construction of MnO2@NH4MnF3 core–shell nanorods for asymmetric supercapacitor. Electrochimica Acta 347:136257

    CAS  Google Scholar 

  57. 57

    Xie LQ, Li HF, Yang ZC, Zhao XH, Zhang HH, Zhang P, Cao ZS, He J, Pan P, Liu J, Wei J, Song DY, Qi W (2020) Facile large-scaled fabrication of graphene-like materials by ultrasonic assisted shear exfoliation method for enhanced performance on flexible supercapacitor applications. Appl Nanosci 10(4):1131–1139

    CAS  Google Scholar 

Download references


This work was financially supported by research Grants from Tianjin Science and Technology Foundation (Grant No. 17ZXZNGX00090), Tianjin Natural Science Foundation (Grant Nos. 18JCZDJC99800, 17JCQNJC00900), National Natural Science Foundation of China (Grant No. 51502203), Tianjin Distinguished Professor Foundation of Young Researcher, Tianjin Development Program for Innovation and Entrepreneurship. We would like to thank Editage (www.editage.cn) for English language editing.

Author information



Corresponding author

Correspondence to Zhengchun Yang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Kyle Brinkman.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 5580 kb)

Supplementary material 2 (DOCX 768 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liu, B., Pan, P. et al. Fabrication of reduced graphene oxide/manganese oxide ink for 3D-printing technology on the application of high-performance supercapacitors. J Mater Sci 56, 8102–8114 (2021). https://doi.org/10.1007/s10853-020-05761-6

Download citation