Controlled release of micronutrients from surface-modified polymer films for agricultural applications


Active polyethylene/carbon black films with the capability of controlled release of micronutrients were developed in this work. A simple technique allowed modifying film surface through the incorporation of different mineral particles (talc, zeolite and calcium carbonate), without altering material bulk properties. Particle distribution and dispersion on surface were analyzed by scanning electron microscopy (SEM); meanwhile, particle concentration was determined by thermogravimetric analysis (TGA). Particle adhesion on films surface was also determined. Saturated solutions of different micronutrients sources (iron, copper and manganese sulfates) were sprayed separately on surface-modified films. SEM, elemental mapping by energy-dispersive X-ray spectrometry (EDS) and X-ray diffraction (XRD) were used to verify the presence of salts on modified films. Finally, release of micronutrients (salts) in distilled water was studied by flame atomic absorption spectroscopy (FAAS). Surface-modified films allowed a controlled release of copper and iron sulfates in water up to a minimum time of 5 weeks. However, the release of manganese could be prolonged up to 1 week. The obtained results could be promissory for the development of active agricultural films with the capability of releasing micronutrients in a controlled manner to satisfy the nutritional requirements of crops, mainly in depleted soils.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1

    Steinmetz Z, Wollmann C, Schaefer M et al (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705.

    CAS  Article  Google Scholar 

  2. 2

    Nurul-Akidah M, Rahmah M, Mohaimi M, Siti Sarah T (2014) Morphological analysis of photodegradable polyethylene films for agricultural use. In: Md Amin H (ed) ICGSCE 2014. Proceedings of the International Conference on Global Sustainability and Chemical Engineering. Springer Singapore, pp 61–68

  3. 3

    Yang R, Li Y, Yu J (2005) Photo-stabilization of linear low density polyethylene by inorganic nano-particles. Polym Degrad Stab 88:168–174.

    CAS  Article  Google Scholar 

  4. 4

    Liu M, Horrocks A (2002) Effect of carbon black on UV stability of LLDPE films under artificial weathering conditions. Polym Degrad Stab 75:485–499.

    CAS  Article  Google Scholar 

  5. 5

    Espejo C, Arribas A, Monzó F, Díez PP (2012) Nanocomposite films with enhanced radiometric properties for greenhouse covering applications. J Plast Film Sheeting 28:336–350.

    CAS  Article  Google Scholar 

  6. 6

    Seven SA, Tastan ÖF, Tas CE et al (2019) Insecticide-releasing LLDPE films as greenhouse cover materials. Mater Today Commun 19:170–176.

    CAS  Article  Google Scholar 

  7. 7

    Borreani G, Tabacco E (2014) Improving corn silage quality in the top layer of farm bunker silos through the use of a next-generation barrier film with high impermeability to oxygen. J Dairy Sci 97:2415–2426.

    CAS  Article  Google Scholar 

  8. 8

    Picuno P (2014) Innovative material and improved technical design for a sustainable exploitation of agricultural plastic film. Polym - Plast Technol Eng 53:1000–1011.

    CAS  Article  Google Scholar 

  9. 9

    Sturgul S (2010) Soil Micronutrients: From B to Z. In: Laboski et al (eds) 2010 Wisconsin crop management conference. Madison, Wisconsin, pp 14–22

  10. 10

    Shuman LM (1998) Micronutrient fertilizers. J Crop Prod 1:165–195.

    CAS  Article  Google Scholar 

  11. 11

    Tripathi DK, Singh S, Singh S et al (2015) Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant 37:1–14.

    CAS  Article  Google Scholar 

  12. 12

    Abusrafa A, Habib S, Krupa I et al (2019) Modification of polyethylene by rf plasma in different/mixture gases. Coatings 9:145–169.

    Article  Google Scholar 

  13. 13

    Patel D, Wu J, Chan P et al (2012) Surface modification of low density polyethylene films by homogeneous catalytic ozonation. Chem Eng Res Des 90:1800–1806.

    CAS  Article  Google Scholar 

  14. 14

    Popelka A, Noorunnisa Khanam P, Ali Almaadeed M (2018) Surface modification of polyethylene/graphene composite using corona discharge. J Phys D Appl Phys 51:1–11.

    CAS  Article  Google Scholar 

  15. 15

    Yoshida S, Hagiwara K, Hasebe T, Hotta A (2013) Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf Coatings Technol 233:99–107.

    CAS  Article  Google Scholar 

  16. 16

    Balart J, Fombuena V, España JM et al (2012) Improvement of adhesion properties of polypropylene substrates by methyl methacrylate UV photografting surface treatment. Mater Des 33:1–10.

    CAS  Article  Google Scholar 

  17. 17

    Grafia AL, Barbosa SE (2015) Envase activo flexible de liberación controlada de repelente

  18. 18

    Grafia AL (2015) Desarrollo de Películas con Propiedades Predeterminadas por Modificación Superficial de Poliolefinas. Universidad Nacional del Sur

  19. 19

    Ferreira AM, Vikulina AS, Volodkin D (2020) CaCO3 crystals as versatile carriers for controlled delivery of antimicrobials. J Control Release 328:470–489.

    CAS  Article  Google Scholar 

  20. 20

    Lide D (2005) Aqueous Solubility of Inorganic Compounds at Various Temperatures. CRC Handbook of Chemistry and Physics. CRC Press, New York, pp 112–117

    Google Scholar 

  21. 21

    ASTM International (2017) ASTM D3359.

  22. 22

    Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397.

    CAS  Article  Google Scholar 

  23. 23

    LA Castillo 2010 Materiales compuestos con cargas minerales Universidad Nacional del Sur Relación de las interacciones matriz-carga con las propiedades finales

  24. 24

    Blue C, Giuffre A, Mergelsberg S et al (2017) Chemical and physical controls on the transformation of amorphous calcium carbonate into crystalline CaCO3 polymorphs. Geochim Cosmochim Acta 196:179–196.

    CAS  Article  Google Scholar 

  25. 25

    López-Periago A, Pacciani R, García-González C et al (2010) A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. J Supercrit Fluids 52:298–305.

    CAS  Article  Google Scholar 

  26. 26

    Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In: Reviews in Economic Geology. Society of Economic Geologists Inc (SEG), pp 161–182

  27. 27

    Safaeefar P, Ang HM, Tadé MO, Reyhani M (2006) Growth kinetics of manganese sulphate from heating and salting-out batch crystallisation. Dev Chem Eng Miner Process 14:303–312.

    Article  Google Scholar 

  28. 28

    Safe A, Sabokkhiz F, Hosein Ramesht M et al (2016) Study clastic sediments and evaporite deposits’ changes in the sedimentary core lake maharlou. Iran Mod Appl Sci 10:1.

    CAS  Article  Google Scholar 

  29. 29

    Zhizhaev AM, Merkulova EN (2014) Interaction of copper(II) and zinc(II) in coprecipitation from sulfate solutions with natural calcium carbonate. Russ J Appl Chem 87:16–22.

    CAS  Article  Google Scholar 

  30. 30

    Booth J, Hong Q, Compton R et al (1997) Gypsum overgrowths passivate calcite to acid attack. J Colloid Interface Sci 192:207–214.

    CAS  Article  Google Scholar 

  31. 31

    Zhizhaev A, Merkulova E, Bragin I (2007) Copper precipitation from sulfate solutions with calcium carbonates. Russ J Appl Chem 80:1632–1635.

    CAS  Article  Google Scholar 

  32. 32

    Alsaiari HA, Kan A, Tomson MB (2010) Effect of calcium and iron (II) ions on the precipitation of calcium carbonate and ferrous carbonate. SPE J 15:294–300.

    CAS  Article  Google Scholar 

  33. 33

    Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer (Guildf) 43:5483–5491.

    CAS  Article  Google Scholar 

  34. 34

    Dumas A, Martin F, Ferrage E et al (2013) Synthetic talc advances: coming closer to nature, added value, and industrial requirements. Appl Clay Sci 85:8–18.

    CAS  Article  Google Scholar 

  35. 35

    Yu W, Peng Y, Zheng Y (2017) Recovery of magnetite from FeSO4·7H2O waste slag by co-precipitation method with calcium hydroxide as precipitant. J Cent South Univ 24:62–70.

    CAS  Article  Google Scholar 

  36. 36

    Bakr NA, Dhahir TAA, Mohammad SB (2017) Growth of Copper Sulfate Pentahydrate Single Crystals by Slow Evaporation Technique. J Adv Phys 13: 4651–4656.

  37. 37

    Kusumaningrum R, Rahmani SA, Widayatno WB et al (2018) Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products. AIP Conf Proc 1964:1–7.

    CAS  Article  Google Scholar 

  38. 38

    Espinosa K, Castillo L, Barbosa S (2016) Blown nanocomposite films from polypropylene and talc. Influence of talc nanoparticles on biaxial properties. Mater Des 111:25–35.

    CAS  Article  Google Scholar 

  39. 39

    Ruíz-Baltazar A, Esparza R, Gonzalez M et al (2015) Preparation and characterization of natural zeolite modified with iron nanoparticles. J Nanomater 1–9.

    Article  Google Scholar 

  40. 40

    Bonavetti VL, Rahhal VF, Locati F et al (2020) Pozzolanic activity of argentine vitreous breccia containing mordenite. Mater Construcción 70:208.

    CAS  Article  Google Scholar 

  41. 41

    Sancho-Tomás M, Fermani S, Gómez-Morales J et al (2014) Calcium carbonate bio-precipitation in counter-diffusion systems using the soluble organic matrix from nacre and sea-urchin spine. Eur J Mineral 26:523–535.

    CAS  Article  Google Scholar 

  42. 42

    Devlin R, Ghio A, Costa D (2000) Responses of Inflammatory Cells. In: Gehr P, Heyde J (eds) Particle Lung Interactions. Marcel Dekker Inc, New York, pp 437–472

    Google Scholar 

  43. 43

    Perić J, Trgo M, Vukojević Medvidović N (2004) Removal of zinc, copper and lead by natural zeolite - a comparison of adsorption isotherms. Water Res 38:1893–1899.

    CAS  Article  Google Scholar 

  44. 44

    Sun W, Nešić S, Woollam RC (2009) The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit. Corros Sci 51:1273–1276.

    CAS  Article  Google Scholar 

  45. 45

    Kralj D, Brečević L (1995) Dissolution kinetics and solubility of calcium carbonate monohydrate. Colloids Surfaces A Physicochem Eng Asp 96:287–293.

    CAS  Article  Google Scholar 

  46. 46

    Kulthanan K, Nuchkull P, Varothai S (2013) The pH of water from various sources: an overview for recommendation for patients with atopic dermatitis. Asia Pac Allergy 3:155–160.

    Article  Google Scholar 

Download references


Authors acknowledge Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Sur (UNS) for their financial support.

Author information



Corresponding author

Correspondence to Silvia E. Barbosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Chris Cornelius.



Micrographs and elemental mappings of S and O for all sprayed films before and after release assays are presented in this file.

See Figs. 11 ,

Figure 11

SEM micrographs and elemental mappings (400x) of O and S for: a FT-Fe, b FT-Cu and c FT-Mn

12 ,

Figure 12

SEM micrographs and elemental mappings (400x) of O and S for: a FZ-Fe, b FZ-Cu and c FZ-Mn

13 ,

Figure 13

SEM micrographs and elemental mappings (400x) of O and S for: a FC-Fe, b FC-Cu and c FC-Mn

14 ,

Figure 14

SEM micrographs and elemental mappings (400x) of O and S for sprayed films after release assays: a FT-Fe, b FT-Cu and c FT-Mn

15 ,

Figure 15

SEM micrographs and elemental mappings (400x) of O and S for sprayed films after release assays: a FZ-Fe, b FZ-Cu and c FZ-Mn


Figure 16

SEM micrographs and elemental mappings (400x) of O and S for sprayed films after release assays: a FC-Fe, b FC-Cu and c FC-Mn

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Linares, P.B., Castillo, L.A. & Barbosa, S.E. Controlled release of micronutrients from surface-modified polymer films for agricultural applications. J Mater Sci 56, 9134–9156 (2021).

Download citation