Skip to main content

Advertisement

Log in

An overview on the incorporation of graphene quantum dots on TiO2 for enhanced performances

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Despite the well-developed history of research on typical TiO2 semiconductors, the modification of their photon-to-electron catalytic performance by incorporating graphene quantum dots (GQDs) which possesses extraordinary properties such as tuned band gap, high mobility and excellent separation of charges, great absorption capacity in the visible light region, and high surface area is still in the primary stage. Since 2013, the investigations regarding the photodriven applications of the versatile GQDs/TiO2 heterojunction has been harvesting the emergent research interests considering the significantly enhanced performance in a range of environment-, energy-, and bio-related areas. The present review aims to provide detailed information about the recent developments in this emerging field and to provide a timely overview of potential applications of the star composite GQDs/TiO2. The recent information regarding the application of versatile GQDs/TiO2 composites as photocatalytic degradation, H2 generation via water splitting, solar cells, and sensors has been discussed. Recent reports suggested that the incorporation of GQD into the TiO2 noticeably increases the degradation efficiency, H2 production, power conversion efficiency of solar cells, as well as sensitivity and selectivity in sensors owing to the extended photon absorption, facilitated charge transfer, and quench electron–hole pair recombination. Besides, the advanced response of GQDs/TiO2 composite as a gas sensor can be ascribed to the enhanced ability to detect gas molecules under UV light illumination besides thermal sensing. Moreover, the common trend in the development of GQDs/TiO2 composites and insights into future perspectives have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  2. Baba R, Konda R, Fujishima A, Honda K (1986) Photoelectrochemical deposition of metals on TiO2 powders in the presence of alcohols. Chem Lett 15:1307. https://doi.org/10.1246/cl.1986.1307

    Article  Google Scholar 

  3. Nakabayashi S, Fujishima A, Honda K (1985) Single charge accumulation dynamics on photocatalytic titanium dioxide particles in ethanol slurries by time domain reflectometry. J Am Chem Soc 107:250. https://doi.org/10.1021/ja00287a045

    Article  CAS  Google Scholar 

  4. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  5. Huo P, Kumar P, Liu B (2018) The mechanism of adsorption, diffusion, and photocatalytic reaction of organic molecules on TiO2 revealed by means of on-site scanning tunneling microscopy observations. Catalysts 8:616. https://doi.org/10.3390/catal8120616

    Article  CAS  Google Scholar 

  6. Huo P, Hansen JØ, Martinez U et al (2012) Ethanol diffusion on rutile TiO2(110) mediated by H adatoms. J Phys Chem Lett 3:283. https://doi.org/10.1021/jz201616z

    Article  CAS  Google Scholar 

  7. Zhao P, Huo P, Han X, Liu B (2019) Enhanced photodegradation activity of electrospun porous TiO2 fibers. Funct Mater Lett. https://doi.org/10.1142/S1793604719410029

    Article  Google Scholar 

  8. Bahnemann W, Muneer M, Haque MM (2007) Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal Today 124:133. https://doi.org/10.1016/j.cattod.2007.03.031

    Article  CAS  Google Scholar 

  9. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrog Energy 45:7764. https://doi.org/10.1016/j.ijhydene.2019.07.241

    Article  CAS  Google Scholar 

  10. Patil SB, Basavarajappa PS, Ganganagappa N, Jyothi MS, Raghu AV, Reddy KR (2019) Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int J Hydrog Energy 44:13022. https://doi.org/10.1016/j.ijhydene.2019.03.164

    Article  CAS  Google Scholar 

  11. Roy S, Tuinenga C, Fungura F, Dagtepe P, Chikan V, Jasinski J (2009) Progress toward producing n-type CdSe quantum dots: tin and indium doped CdSe quantum dots. J Phys Chem C 113:13008. https://doi.org/10.1021/jp8113946

    Article  CAS  Google Scholar 

  12. Landry ML, Morrell TE, Karagounis TK, Hsia C-H, Wang C-Y (2014) Simple syntheses of CdSe quantum dots. J Chem Educ 91:274. https://doi.org/10.1021/ed300568e

    Article  CAS  Google Scholar 

  13. Umar AA, Reshak AH, Oyama M, Plucinski KJ (2012) Fluorescent and nonlinear optical features of CdTe quantum dots. J Mater Sci Mater Electron 23:546. https://doi.org/10.1007/s10854-011-0434-6

    Article  CAS  Google Scholar 

  14. Zheng Y, Gao S, Ying JY (2007) Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 19:376. https://doi.org/10.1002/adma.20060034

    Article  CAS  Google Scholar 

  15. Mnasri G, Mansouri S, Yalçin EL, Al-Ghamdi AA, Yakuphanoglu F (2020) Characterization and study of CdS quantum dots solar cells based on graphene-TiO2 nanocomposite photoanode. Results Phys 18:103253. https://doi.org/10.1016/j.rinp.2020.103253

    Article  Google Scholar 

  16. Zhao D, Yang C-F (2016) Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew Sustain Energy Rev 54:1048. https://doi.org/10.1016/j.rser.2015.10.100

    Article  CAS  Google Scholar 

  17. Kim J, Lee B, Kim YJ, Hwang SW (2019) Enhancement of dye-sensitized solar cells efficiency using graphene quantum dots as photoanode. Bull Korean Chem Soc 40:56. https://doi.org/10.1002/bkcs.11664

    Article  CAS  Google Scholar 

  18. Bajorowicz B, Kobylański MP, Gołąbiewska A, Nadolna J, Zaleska-Medynska A, Malankowska A (2018) Quantum dot-decorated semiconductor micro- and nanoparticles: a review of their synthesis, characterization and application in photocatalysis. Adv Coll Interface Sci 256:352. https://doi.org/10.1016/j.cis.2018.02.003

    Article  CAS  Google Scholar 

  19. Shin DH, Kim S, Kim JM et al (2015) Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect. Adv Mater 27:2614. https://doi.org/10.1002/adma.201500040

    Article  CAS  Google Scholar 

  20. Chang K (2000) Quantum-confinement-effect-driven type-I–type-II transition in inhomogeneous quantum dot structures. Phys Rev B 61:4743. https://doi.org/10.1103/PhysRevB.61.4743

    Article  CAS  Google Scholar 

  21. Chen X, Li J, Pan G et al (2019) Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens Actuat B Chem 289:131. https://doi.org/10.1016/j.snb.2019.03.052

    Article  CAS  Google Scholar 

  22. Nakamura R, Makuta S, Tachibana Y (2015) Electron injection dynamics at the SILAR deposited CdS quantum dot/TiO2 interface. J Phys Chem C 119:20357. https://doi.org/10.1021/acs.jpcc.5b06900

    Article  CAS  Google Scholar 

  23. Church CP, Muthuswamy E, Zhai G, Kauzlarich SM, Carter SA (2013) Quantum dot Ge/TiO2 heterojunction photoconductor fabrication and performance. Appl Phys Lett 103:223506. https://doi.org/10.1063/1.4826916

    Article  CAS  Google Scholar 

  24. Szymanski P, Fuke N, Koposov AY, Manner VW, Hoch LB, Sykora M (2011) Effect of organic passivation on photoinduced electron transfer across the quantum dot/TiO2 interface. Chem Commun 47:6437. https://doi.org/10.1039/c1cc00025j

    Article  CAS  Google Scholar 

  25. Ratanatawanate C, Tao Y, Balkus KJ (2009) Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J Phys Chem C 113:10755. https://doi.org/10.1021/jp903050h

    Article  CAS  Google Scholar 

  26. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4:1732. https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  Google Scholar 

  27. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Materials Today Chemistry 10:221. https://doi.org/10.1016/j.mtchem.2018.09.007

    Article  CAS  Google Scholar 

  28. Fei X, Liu Z, Li Y et al (2017) One-pot green synthesis of flower-liked Au NP@GQDs nanocomposites for surface-enhanced Raman scattering. J Alloys Compd 725:1084. https://doi.org/10.1016/j.jallcom.2017.05.072

    Article  CAS  Google Scholar 

  29. Xue Z, Gao H, Li X (2018) A green and lower-temperature synthesis of two-color fluorescent nitrogen doped graphene quantum dots. Dyes Pigm 156:379. https://doi.org/10.1016/j.dyepig.2018.04.032

    Article  CAS  Google Scholar 

  30. Abbas A, Mariana LT, Phan AN (2018) Biomass-waste derived graphene quantum dots and their applications. Carbon 140:77. https://doi.org/10.1016/j.carbon.2018.08.016

    Article  CAS  Google Scholar 

  31. Yang EJ, Jeon OS, Yang JU, Shin MK, Yoo YJ, Park SY (2020) Room temperature manufacturing photoluminescent graphene quantum dots based on MXene. Carbon 167:863. https://doi.org/10.1016/j.carbon.2020.05.063

    Article  CAS  Google Scholar 

  32. Gupta BK, Kedawat G, Agrawal Y, Kumar P, Dwivedi J, Dhawan SK (2015) A novel strategy to enhance ultraviolet light driven photocatalysis from graphene quantum dots infilled TiO2 nanotube arrays. RSC Adv 5:10623. https://doi.org/10.1039/c4ra14039g

    Article  CAS  Google Scholar 

  33. Safardoust-Hojaghan H, Salavati-Niasari M (2017) Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J Clean Prod 148:31. https://doi.org/10.1016/j.jclepro.2017.01.169

    Article  CAS  Google Scholar 

  34. Henna TK, Pramod K (2020) Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng C 110:110651. https://doi.org/10.1016/j.msec.2020.110651

    Article  CAS  Google Scholar 

  35. Yan Y, Kuang W, Shi L et al (2019) Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light. J Alloys Compd 777:234. https://doi.org/10.1016/j.jallcom.2018.10.191

    Article  CAS  Google Scholar 

  36. Chen F, Gao W, Qiu X et al (2017) Graphene quantum dots in biomedical applications: recent advances and future challenges. Front Lab Med 1:192. https://doi.org/10.1016/j.flm.2017.12.006

    Article  Google Scholar 

  37. Wang S, Cole IS, Li Q (2016) Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications. Chem Commun 52:9208. https://doi.org/10.1039/c6cc03302d

    Article  CAS  Google Scholar 

  38. Chung S, Revia RA, Zhang M (2019) Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater. https://doi.org/10.1002/adma.201904362

    Article  Google Scholar 

  39. Razmi H, Mohammad-Rezaei R (2013) Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron 41:498. https://doi.org/10.1016/j.bios.2012.09.009

    Article  CAS  Google Scholar 

  40. Zhang Y, Wu C, Zhou X et al (2013) Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5:1816. https://doi.org/10.1039/C3NR33954H

    Article  CAS  Google Scholar 

  41. Ananthanarayanan A, Wang X, Routh P et al (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24:3021. https://doi.org/10.1002/adfm.201303441

    Article  CAS  Google Scholar 

  42. Wu X, Zhang Y, Han T, Wu H, Guo S, Zhang J (2014) Composite of graphene quantum dots and Fe3O4 nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Adv 4:3299. https://doi.org/10.1039/C3RA44709J

    Article  CAS  Google Scholar 

  43. Li L, Li L, Wang C et al (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta 182:763. https://doi.org/10.1007/s00604-014-1383-6

    Article  CAS  Google Scholar 

  44. Nie Y-C, Yu F, Wang L-C et al (2018) Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism. Appl Catal B 227:312. https://doi.org/10.1016/j.apcatb.2018.01.033

    Article  CAS  Google Scholar 

  45. Hu L, Du H, Liu C et al (2018) Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process. ACS Sustain Chem Eng 7:1327. https://doi.org/10.1021/acssuschemeng.8b05017

    Article  CAS  Google Scholar 

  46. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4:1029. https://doi.org/10.1021/nl049670j

    Article  CAS  Google Scholar 

  47. Pan D, Jiao J, Li Z et al (2015) Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain Chem Eng 3:2405. https://doi.org/10.1021/acssuschemeng.5b00771

    Article  CAS  Google Scholar 

  48. Qu A, Xie H, Xu X, Zhang Y, Wen S, Cui Y (2016) High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Appl Surf Sci 375:230. https://doi.org/10.1016/j.apsusc.2016.03.077

    Article  CAS  Google Scholar 

  49. Tian H, Shen K, Hu X, Qiao L, Zheng W (2017) N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J Alloys Compd 691:369. https://doi.org/10.1016/j.jallcom.2016.08.261

    Article  CAS  Google Scholar 

  50. Geng H, Du P, Zhang Z et al (2018) Architecting Bi2S3/graphene quantum dots/TiO2 photoelectrodes for aqueous Cr(VI)/methyl orange removal. Mater Lett 214:146. https://doi.org/10.1016/j.matlet.2017.11.126

    Article  CAS  Google Scholar 

  51. Zubair M, Kim H, Razzaq A, Grimes CA, In SI (2018) Solar spectrum photocatalytic conversion of CO2 to CH4 utilizing TiO2 nanotube arrays embedded with graphene quantum dots. J CO2 Util 26:70. https://doi.org/10.1016/j.jcou.2018.04.004

    Article  CAS  Google Scholar 

  52. Rajender G, Kumar J, Giri PK (2018) Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Appl Catal B 224:960. https://doi.org/10.1016/j.apcatb.2017.11.042

    Article  CAS  Google Scholar 

  53. Luo Y, Li M, Hu G et al (2018) Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO2 nanocomposites. Mater Res Bull 97:428. https://doi.org/10.1016/j.materresbull.2017.09.038

    Article  CAS  Google Scholar 

  54. Li H, Xing J, Xia Z, Chen J (2015) Preparation of coaxial heterogeneous graphene quantum dot-sensitized TiO2 nanotube arrays via linker molecule binding and electrophoretic deposition. Carbon 81:474. https://doi.org/10.1016/j.carbon.2014.09.080

    Article  CAS  Google Scholar 

  55. Xie H, Hou C, Wang H, Zhang Q, Li Y (2017) S, N co-doped graphene quantum dot/TiO2 composites for efficient photocatalytic hydrogen generation. Nanoscale Res Lett. https://doi.org/10.1186/s11671-017-2101-1

    Article  Google Scholar 

  56. Chinnusamy S, Kaur R, Bokare A, Erogbogbo F (2018) Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2. MRS Commun 8:137. https://doi.org/10.1557/mrc.2018.7

    Article  CAS  Google Scholar 

  57. Kundu S, Sarojinijeeva P, Karthick R et al (2017) Enhancing the efficiency of DSSCs by the modification of TiO2 photoanodes using N, F and S, co-doped graphene quantum dots. Electrochim Acta 242:337. https://doi.org/10.1016/j.electacta.2017.05.024

    Article  CAS  Google Scholar 

  58. Salam Z, Vijayakumar E, Subramania A, Sivasankar N, Mallick S (2015) Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Sol Energy Mater Sol Cells 143:250. https://doi.org/10.1016/j.solmat.2015.07.001

    Article  CAS  Google Scholar 

  59. Chinnusamy Jayanthi S, Kaur R, Erogbogbo F (2016) Graphene quantum dot-titania nanoparticle composite for photocatalytic water splitting. MRS Adv 1:2071. https://doi.org/10.1557/adv.2016.470

    Article  CAS  Google Scholar 

  60. Pang X, Bian H, Wang W et al (2017) A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV. Biosens Bioelectron 91:456. https://doi.org/10.1016/j.bios.2016.12.059

    Article  CAS  Google Scholar 

  61. Shafaee M, Goharshadi EK, Mashreghi M, Sadeghinia M (2018) TiO2 nanoparticles and TiO2 @graphene quantum dots nancomposites as effective visible/solar light photocatalysts. J Photochem Photobiol A 357:90. https://doi.org/10.1016/j.jphotochem.2018.02.019

    Article  CAS  Google Scholar 

  62. Kumar DK, Suazo-Davila D, García-Torres D et al (2019) Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications. Electrochim Acta 305:278. https://doi.org/10.1016/j.electacta.2019.03.040

    Article  CAS  Google Scholar 

  63. Shen D, Zhang W, Xie F, Li Y, Abate A, Wei M (2018) Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells. J Power Sources 402:320. https://doi.org/10.1016/j.jpowsour.2018.09.056

    Article  CAS  Google Scholar 

  64. Zhu Z, Ma J, Wang Z et al (2014) Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136:3760. https://doi.org/10.1021/ja4132246

    Article  CAS  Google Scholar 

  65. Yu Y, Ren J, Meng M (2013) Photocatalytic hydrogen evolution on graphene quantum dots anchored TiO2 nanotubes-array. Int J Hydrog Energy 38:12266. https://doi.org/10.1016/j.ijhydene.2013.07.039

    Article  CAS  Google Scholar 

  66. Huang YF, Lim PF, Hak CH et al (2018) Solar light harvesting N-graphene quantum dots decorated TiO2 for enhanced photocatalytic activity. E3S Web Conf 65:05014. https://doi.org/10.1051/e3sconf/20186505014

    Article  CAS  Google Scholar 

  67. Qin Y, Cheng Y, Jiang L et al (2015) Top-down strategy toward versatile graphene quantum dots for organic/inorganic hybrid solar cells. ACS Sustain Chem Eng 3:637. https://doi.org/10.1021/sc500761n

    Article  CAS  Google Scholar 

  68. Azimirad R, Safa S, Ebrahimi M, Yousefzadeh S, Moshfegh AZ (2017) Photoelectrochemical activity of graphene quantum dots/hierarchical porous TiO2 photoanode. J Alloys Compd 721:36. https://doi.org/10.1016/j.jallcom.2017.05.301

    Article  CAS  Google Scholar 

  69. Lim PF, Leong KH, Sim LC, Abd Aziz A, Saravanan P (2018) Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis. Environ Sci Pollut Res 26:3455. https://doi.org/10.1007/s11356-018-3821-1

    Article  CAS  Google Scholar 

  70. Yan Y, Liu Q, Du X, Qian J, Mao H, Wang K (2015) Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Anal Chim Acta 853:258. https://doi.org/10.1016/j.aca.2014.10.021

    Article  CAS  Google Scholar 

  71. Shao S, Wang W, Zhou K, Jiang F, Wu H, Koehn R (2017) GQDs-TiO2 heterojunction based thin films for volatile organic compounds sensor with excellent performance at room temperature. Mater Lett 186:193. https://doi.org/10.1016/j.matlet.2016.10.012

    Article  CAS  Google Scholar 

  72. Bayat A, Saievar-Iranizad E (2018) Graphene quantum dots decorated rutile TiO2 nanoflowers for water splitting application. J Energy Chem 27:306. https://doi.org/10.1016/j.jechem.2017.09.036

    Article  Google Scholar 

  73. Murali G, Reddeppa M, Seshendra Reddy C et al (2020) Enhancing the charge carrier separation and transport via nitrogen-doped graphene quantum dot-TiO2 nanoplate hybrid structure for an efficient NO gas sensor. ACS Appl Mater Interfaces 12:13428. https://doi.org/10.1021/acsami.9b19896

    Article  CAS  Google Scholar 

  74. Hao X, Jin Z, Xu J, Min S, Lu G (2016) Functionalization of TiO2 with graphene quantum dots for efficient photocatalytic hydrogen evolution. Superlattices Microstruct 94:237. https://doi.org/10.1016/j.spmi.2016.04.024

    Article  CAS  Google Scholar 

  75. Qin X, Wang Q, Geng L, Shu X, Wang Y (2019) A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol. Talanta 197:28. https://doi.org/10.1016/j.talanta.2018.12.103

    Article  CAS  Google Scholar 

  76. Min S, Hou J, Lei Y, Ma X, Lu G (2017) Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution. Appl Surf Sci 396:1375. https://doi.org/10.1016/j.apsusc.2016.11.169

    Article  CAS  Google Scholar 

  77. Tian C, Wang L, Luan F, Zhuang X (2019) An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta 191:103. https://doi.org/10.1016/j.talanta.2018.08.050

    Article  CAS  Google Scholar 

  78. Miranda-Andrades JR, Letichevsky S, González Larrudé DR, Aucelio RQ (2020) Photo-generation of mercury cold vapor mediated by graphene quantum dots/TiO2 nanocomposite: on line time-resolved speciation at ultra-trace levels. Anal Chim Acta 1127:256. https://doi.org/10.1016/j.aca.2020.06.048

    Article  CAS  Google Scholar 

  79. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541. https://doi.org/10.1021/cr9001319

    Article  CAS  Google Scholar 

  80. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324. https://doi.org/10.1039/B517632H

    Article  Google Scholar 

  81. Jinendra U, Kumar J, Nagabhushana BM, Raghu AV, Bilehal D (2019) Facile synthesis of CoFe2O4 nanoparticles and application in removal of malachite green dye. Green Mater 7:137

    Article  Google Scholar 

  82. Srinivas M, Reddy CV, Reddy KR, Nagaraj PS, Reddy MS, Raghu AV (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater Res Express 6:125502. https://doi.org/10.1088/2053-1591/ab5328

    Article  CAS  Google Scholar 

  83. Jinendra U, Bilehal D, Nagabhushana BM, Reddy KR, Reddy CV, Raghu AV (2019) Template-free hydrothermal synthesis of hexa ferrite nanoparticles and its adsorption capability for different organic dyes: comparative adsorption studies, isotherms and kinetic studies. Mater Sci Energy Technol 2:657. https://doi.org/10.1016/j.mset.2019.08.005

    Article  Google Scholar 

  84. Chen D, Cheng Y, Zhou N et al (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725. https://doi.org/10.1016/j.jclepro.2020.121725

    Article  CAS  Google Scholar 

  85. Kang JS, Sohn S-D, Shin H-J (2020) Dissociative adsorption of H2O2 on the TiO2(110) surface for advanced oxidation process. J Phys Chem C 124:11930. https://doi.org/10.1021/acs.jpcc.0c02143

    Article  CAS  Google Scholar 

  86. Fernandes A, Makoś P, Wang Z, Boczkaj G (2020) Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chem Eng J 391:123488. https://doi.org/10.1016/j.cej.2019.123488

    Article  CAS  Google Scholar 

  87. Kumar A, Kumar S, Krishnan V (2019) Perovskite-based materials for photocatalytic environmental remediation. In: Inamuddin SG, Kumar A, Lichtfouse E, Asiri AM (eds) Nanophotocatalysis and environmental applications materials and technology. Springer, Switzerland, pp 139–169

    Chapter  Google Scholar 

  88. Jyothi MS, Nayak V, Reddy KR, Naveen S, Raghu AV (2019) Non-metal (oxygen, sulphur, nitrogen, boron and phosphorus)-doped metal oxide hybrid nanostructures as highly effificient photocatalysts for water treatment and hydrogen generation. In: Inamuddin SG, Kumar A, Lichtfouse E, Asiri AM (eds) Nanophotocatalysis and environmental applications. materials and technology. Springer, Switzerland, pp 83–106

    Chapter  Google Scholar 

  89. Guo Z, Wu H, Li M, Tang T, Wen J, Li X (2020) Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Appl Surf Sci 526:146724. https://doi.org/10.1016/j.apsusc.2020.146724

    Article  CAS  Google Scholar 

  90. Zhang H, Mo Z, Pei H et al (2019) A synthesis of graphene quantum dots/hollow TiO2 nanosphere composites for enhancing visible light photocatalytic activity. J Mater Sci Mater Electron 31:1430. https://doi.org/10.1007/s10854-019-02657-3

    Article  CAS  Google Scholar 

  91. Khojasteh H, Amiri M, Sohrabi A, Khanahmadzadeh S, Salavati-Niasari M, Moayedi H (2020) Synthesis of magnetically reusable Fe3O4/TiO2-N, P co-doped graphene quantum dot nancomposites using hexachlorocyclophosphazene; high photoluminance property and photocatalytic promoter. J Mater Res Technol 9:1380. https://doi.org/10.1016/j.jmrt.2019.11.064

    Article  CAS  Google Scholar 

  92. Huo P, Zhao P, Shi X, Zhou Z, Liu B (2021) Enhanced photocatalytic performance of electrospun hollow titanium dioxide nanofibers decorated with graphene quantum dots. J Mater Sci 56:2138. https://doi.org/10.1007/s10853-020-05352-5

    Article  CAS  Google Scholar 

  93. Raghavan A, Sarkar S, Nagappagari LR, Bojja S, MuthukondaVenkatakrishnan S, Ghosh S (2020) decoration of graphene quantum dots on TiO2 nanostructures: photosensitizer and cocatalyst role for enhanced hydrogen generation. Ind Eng Chem Res 59:13060. https://doi.org/10.1021/acs.iecr.0c01663

    Article  CAS  Google Scholar 

  94. Wang Z-Y, Rao H, Deng M-F, Fan Y-T, Hou H-W (2013) Photocatalytic H2 generation based on noble-metal-free binuclear cobalt complexes using visible-light. Phys Chem Chem Phys 15:16665. https://doi.org/10.1039/C3CP51550H

    Article  CAS  Google Scholar 

  95. Huo J, Zhang Y-B, Zou W-Y, Hu X, Deng Q, Chen D (2019) Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H2 production. Catal Sci Technol 9:2716. https://doi.org/10.1039/C8CY02581A

    Article  CAS  Google Scholar 

  96. Karthik KV, Reddy CV, Reddy KR et al (2019) Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J Mater Sci Mater Electron 30:20646. https://doi.org/10.1007/s10854-019-02430-6

    Article  CAS  Google Scholar 

  97. Zheng L, Zhang J, Hu YH, Long M (2019) Enhanced photocatalytic production of H2O2 by nafion coatings on S, N-codoped graphene-quantum-dots-modified TiO2. J Phys Chem C 123:13693. https://doi.org/10.1021/acs.jpcc.9b02311

    Article  CAS  Google Scholar 

  98. Sajjadizadeh H-S, Goharshadi EK, Ahmadzadeh H (2020) Photoelectrochemical water splitting by engineered multilayer TiO2/GQDs photoanode with cascade charge transfer structure. Int J Hydrog Energy 45:123. https://doi.org/10.1016/j.ijhydene.2019.10.161

    Article  CAS  Google Scholar 

  99. Wang X, Ling D, Wang Y et al (2014) N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response. J Mater Res 29:1408. https://doi.org/10.1557/jmr.2014.152

    Article  CAS  Google Scholar 

  100. Bayat A, Saievar-Iranizad E (2018) Vertically aligned rutile TiO2 nanorods sensitized with sulfur and nitrogen co-doped graphene quantum dots for water splitting: an energy level study. J Alloys Compd 755:192. https://doi.org/10.1016/j.jallcom.2018.05.008

    Article  CAS  Google Scholar 

  101. Low FW, Lai CW (2018) Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: a review. Renew Sustain Energy Rev 82:103. https://doi.org/10.1016/j.rser.2017.09.024

    Article  CAS  Google Scholar 

  102. Sahu A, Garg A, Dixit A (2020) A review on quantum dot sensitized solar cells: past, present and future towards carrier multiplication with a possibility for higher efficiency. Sol Energy 203:210. https://doi.org/10.1016/j.solener.2020.04.044

    Article  CAS  Google Scholar 

  103. Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93:465. https://doi.org/10.1016/j.solmat.2008.12.012

    Article  CAS  Google Scholar 

  104. Zhou H, Yang L, Stuart AC, Price SC, Liu S, You W (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew Chem Int Ed 50:2995. https://doi.org/10.1002/anie.201005451

    Article  CAS  Google Scholar 

  105. Teymourinia H, Hossein Darvishnejad M, Amiri O et al (2020) GQDs/Sb2S3/TiO2 as a co-sensitized in DSSs: improve the power conversion efficiency of DSSs through increasing light harvesting by using as-synthesized nanocomposite and mirror. Appl Surf Sci 512:145638. https://doi.org/10.1016/j.apsusc.2020.145638

    Article  CAS  Google Scholar 

  106. Sharif NFM, Kadir MZAA, Shafie S, Rashid SA, Wan Hasan WZ, Shaban S (2019) Charge transport and electron recombination suppression in dye-sensitized solar cells using graphene quantum dots. Results Phys 13:102171. https://doi.org/10.1016/j.rinp.2019.102171

    Article  Google Scholar 

  107. Mustafa MN, Sulaiman Y (2020) Optimization of titanium dioxide decorated by graphene quantum dot as a light scatterer for enhanced dye-sensitized solar cell performance. J Electroanal Chem 876:114516. https://doi.org/10.1016/j.jelechem.2020.114516

    Article  CAS  Google Scholar 

  108. Peter IJ, Rajamanickam N, Vijaya S, Anandan S, Ramachandran K, Nithiananthi P (2020) TiO2/graphene quantum dots core-shell based photo anodes with TTIP treatment—a perspective way of enhancing the short circuit current. Sol Energy Mater Sol Cells 205:110239. https://doi.org/10.1016/j.solmat.2019.110239

    Article  CAS  Google Scholar 

  109. Jahantigh F, Ghorashi SMB, Mozaffari S (2020) Orange photoluminescent N-doped graphene quantum dots as an effective co-sensitizer for dye-sensitized solar cells. J Solid State Electrochem 24:883. https://doi.org/10.1007/s10008-020-04515-3

    Article  CAS  Google Scholar 

  110. Khorshidi E, Rezaei B, Irannejad N et al (2020) The role of GQDs additive in TiO2 nanorods as an electron transfer layer on performance improvement of the perovskite solar cells. Electrochim Acta 337:135822. https://doi.org/10.1016/j.electacta.2020.135822

    Article  CAS  Google Scholar 

  111. Pang S, Zhang C, Zhang H et al (2020) Boosting performance of perovskite solar cells with graphene quantum dots decorated SnO2 electron transport layers. Appl Surf Sci 507:145099. https://doi.org/10.1016/j.apsusc.2019.145099

    Article  CAS  Google Scholar 

  112. Chansud N, Bunkoed C (2021) Nano-optosensor based on titanium dioxide and graphene quantum dots composited with specific polymer for cefazolin detection. J Pharm Biomed Anal 193:113715. https://doi.org/10.1016/j.jpba.2020.113715

    Article  CAS  Google Scholar 

  113. Sun X, Li C, Zhu Q et al (2020) A novel ultrasensitive sandwich-type photoelectrochemical immunoassay for PSA detection based on dual inhibition effect of Au/MWCNTs nanohybrids on N-GQDs/CdS QDs dual sensitized urchin-like TiO2. Electrochim Acta 333:135480. https://doi.org/10.1016/j.electacta.2019.135480

    Article  CAS  Google Scholar 

  114. Shao S, Kim HW, Kim SS, Chen Y, Lai M (2020) NGQDs modified nanoporous TiO2/graphene foam nanocomposite for excellent sensing response to formaldehyde at high relative humidity. Appl Surf Sci 516:145932. https://doi.org/10.1016/j.apsusc.2020.145932

    Article  CAS  Google Scholar 

  115. Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel) 10:5469. https://doi.org/10.3390/s100605469

    Article  CAS  Google Scholar 

  116. Bârsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813. https://doi.org/10.1088/0953-8984/15/20/201

    Article  Google Scholar 

  117. Long R (2013) Understanding the electronic structures of graphene quantum dot physisorption and chemisorption onto the TiO2(110) surface: a first-principles calculation. ChemPhysChem 14:579. https://doi.org/10.1002/cphc.201200882

    Article  CAS  Google Scholar 

  118. Long R, Casanova D, Fang W-H, Prezhdo OV (2017) Donor–acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: π-stacking supersedes covalent bonding. J Am Chem Soc 139:2619. https://doi.org/10.1021/jacs.6b09598

    Article  CAS  Google Scholar 

  119. Teymourinia H, Salavati-Niasari M, Amiri O, Yazdian F (2019) Application of green synthesized TiO2/Sb2S3/GQDs nanocomposite as high efficient antibacterial agent against E. coli and Staphylococcus aureus. Mater Sci Eng C 99:296. https://doi.org/10.1016/j.msec.2019.01.094

    Article  CAS  Google Scholar 

  120. Zheng L, Su H, Zhang J et al (2018) Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl Catal B 239:475. https://doi.org/10.1016/j.apcatb.2018.08.031

    Article  CAS  Google Scholar 

  121. Qian B, Dai H, Tang S, Song Z (2019) Enhanced photocathodic protection performance of graphene quantum dots sensitized TiO2 nanotube arrays for 304 stainless steel. Optik 178:128. https://doi.org/10.1016/j.ijleo.2018.10.027

    Article  CAS  Google Scholar 

  122. Ramachandran P, Lee CY, Doong R-A, Oon CE, Kim Thanh NT, Lee HL (2020) A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation. RSC Adv 10:21795. https://doi.org/10.1039/d0ra02907f

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China, Grant Number: 11904208 and A Project of Shandong Province Higher Educational Science and Technology Program, Grant Number: J18KB098.

Author information

Authors and Affiliations

Authors

Contributions

Dr. P.K. was included as the 4th author because he has made substantial contribution to editing the manuscript.

Corresponding authors

Correspondence to Peipei Huo or Bo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, P., Shi, X., Zhang, W. et al. An overview on the incorporation of graphene quantum dots on TiO2 for enhanced performances. J Mater Sci 56, 6031–6051 (2021). https://doi.org/10.1007/s10853-020-05670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05670-8

Navigation