Zeolitic imidazolate framework nanoparticles loaded with gadolinium chelate as efficient T1 MRI contrast agent

Abstract

Gd–chelate magnetic resonance imaging (MRI) contrast agents used in conventional clinical medicine still have some shortcomings, such as their low relaxation rates and poor imaging sensitivity. In this work, a Gd–chelate (Gd–DTPA), with a comparison made to the commercial contrast agent Magnevist was loaded into a zeolitic imidazolate framework (ZIF-8) to construct the efficient T1 MRI contrast agent Gd–DTPA@ZIF-8. At 0.5 T, the longitudinal relaxivity value (r1) of Gd–DTPA@ZIF-8 reaches 29.60 mM−1 s−1, which is about 6 times higher than that of Gd–DTPA. In terms of the retention of Gd–DTPA in ZIF-8, no obvious Gd3+ ions are released in water and complete culture solution over a long time period. Haemolysis and cytotoxicity experiments revealed that Gd–DTPA@ZIF-8 has good biocompatibility. In addition, the in vivo MRI results prove that Gd–DTPA@ZIF-8 can significantly enhance the T1-weighted MRI contrast effect of the tumour site. These advantages make Gd–DTPA@ZIF-8 a potential candidate for biomedical applications.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1

    Yang CT, Chuang KH (2012) Gd(III) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood–brain barrier permeable. Med Chem Commun 3:552–565

    CAS  Article  Google Scholar 

  2. 2

    Zhou ZJ, Yang LJ, Gao JH, Chen XY (2019) Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv Mater 31:1804567e

    Article  Google Scholar 

  3. 3

    Villaraza AJL, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959

    CAS  Article  Google Scholar 

  4. 4

    Nichol JM, Naibert TR, Hemesath ER, Lauhon LJ, Budakian R (2013) Nanoscale fourier-transform magnetic resonance imaging. Phys Rev X 3:031016e

    Google Scholar 

  5. 5

    Zhu ZJ, Haghiashtiani G, McAlpine MC (2019) Biophysical sensing in deep tissue via MRI. Nat Biomed Eng 3:11–12

    Article  Google Scholar 

  6. 6

    Li YW, Huang YR, Wang Z, Carniato F, Xie YJ, Patterson JP, Thompson MP, Andolina CM, Ditri TB, Millstone JE, Figueroa JS, Rinehart JD, Scadeng M, Botta M, Gianneschi NC (2016) Polycatechol Nanoparticle MRI Contrast Agents. Small 12:668–677

    CAS  Article  Google Scholar 

  7. 7

    Nguyen TDT, Pitchaimani A, Ferrel C, Thakkar R, Aryal S (2018) Nano-confinement-driven enhanced magnetic relaxivity of SPIONs for targeted tumor bioimaging. Nanoscale 10:284–294

    CAS  Article  Google Scholar 

  8. 8

    Fu YJ, Raatschen HJ, Nitecki DE, Wendland MF, Novikov V, Fournier LS, Cyran C, Rogut V, Shames DM, Brasch RC (2007) Cascade polymeric MRI contrast media derived from poly(ethylene glycol) cores: initial syntheses and characterizations. Biomacromol 8:1519–1529

    CAS  Article  Google Scholar 

  9. 9

    Tang CM, Wang C, Zhang Y, Xue LJ, Li YY, Ju CY, Zhang C (2019) Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett 19:4470–4477

    CAS  Article  Google Scholar 

  10. 10

    Sun CJ, Lin HY, Gong XQ, Yang ZX, Mo Y, Chen XY, Gao JH (2020) DOTA-branched organic frameworks as giant and potent metal chelators. J Am Chem Soc 142:198–206

    CAS  Article  Google Scholar 

  11. 11

    Yang ZX, Lin HY, Huang JQ, Li A, Sun CJ, Richmond J, Gao JH (2019) A gadolinium-complex-based theranostic prodrug for in vivo tumour-targeted magnetic resonance imaging and therapy. Chem Commun 55:4546–4549

    CAS  Article  Google Scholar 

  12. 12

    Shen ZY, Liu T, Yang Z, Zhou ZJ, Tang W, Fan WP, Liu YJ, Mu J, Li L, Bregadze VI, Mandal SK, Druzina AA, Wei ZN, Qiu XZ, Wu AG, Chen XY (2020) Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials 235:119783e

    Article  Google Scholar 

  13. 13

    Li H, Parigi G, Luchinat C, Meade TJ (2019) Bimodal fluorescence-magnetic resonance contrast agent for apoptosis imaging. J Am Chem Soc 141:6224–6233

    CAS  Article  Google Scholar 

  14. 14

    Godart E, Long A, Rosas R, Lemercier G, Jean M, Leclerc S, Bouguet-Bonnet S, Godfrin C, Chapellet L, Dutasta J, Martinez A (2019) High-relaxivity Gd(III)−hemicryptophane complex. Org Lett 21:1999–2003

    CAS  Article  Google Scholar 

  15. 15

    Sarno FD, Ponsiglione AM, Russo M, Grimaldi AM, Forte E, Netti PA, Torino E (2019) Water-mediated nanostructures for enhanced MRI: impact of water dynamics on relaxometric properties of Gd-DTPA. Theranostics 9:1809–1824

    Article  Google Scholar 

  16. 16

    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    CAS  Article  Google Scholar 

  17. 17

    Strauch RC, Mastarone DJ, Sukerkar PA, Song Y, Ipsaro JJ, Meade TJ (2011) Reporter protein-targeted probes for magnetic resonance imaging. J Am Chem Soc 133:16346–16349

    CAS  Article  Google Scholar 

  18. 18

    Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119:957–1057

    CAS  Article  Google Scholar 

  19. 19

    Taylor KML, Kim JS, Rieter WJ, An HY, Lin WL, Lin WB (2008) Mesoporous silica nanospheres as highly efficient mri contrast agents. J Am Chem Soc 130:2154–2155

    CAS  Article  Google Scholar 

  20. 20

    Courant T, Roullin VG, Cadiou C, Callewaert M, Andry MC, Portefaix C, Hoeffel C, Goltstein MC, Port M, Laurent S, Elst LV, Muller R, Molinari M, Chuburu F (2012) Hydrogels incorporating GdDOTA: towards highly efficient dual T1/T2 MRI contrast agents. Angew Chem Int Ed 51:1–5

    Article  Google Scholar 

  21. 21

    Wang LR, Lin HY, Ma LC, Jin JB, Shen TP, Wei RX, Wang XM, Ai H, Chen Z, Gao JH (2017) Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T1T2 dualmode contrast agents for accurate liver tumor imaging. Nanoscale 9:4516–4523

    CAS  Article  Google Scholar 

  22. 22

    Sethi R, Ananta JS, Karmonik C, Zhong M, Fung SH, Liu XW, Li K, Ferrari M, Wilson LJ, Decuzzi P (2012) Enhanced MRI relaxivity of Gd3+-based contrast agents geometrically confined within porous nanoconstructs. Contrast Media Mol Imaging 7:501–508

    CAS  Article  Google Scholar 

  23. 23

    Zhang SY, Wang ZY, Gao J, Wang KY, Gianolio E, Aime S, Shi W, Zhou Z, Cheng P, Zaworotko MJ (2019) A gadolinium(III) zeolite-like metal-organic-framework-based magnetic resonance thermometer. Chem 5:1609–1618

    CAS  Article  Google Scholar 

  24. 24

    Zhang Z, Sang W, Xie LS, Dai YL (2019) Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 399:213022

    CAS  Article  Google Scholar 

  25. 25

    Zhang SY, Wang ZY, Gao J, Wang K, Gianolio E, Aime S, Shi W, Zhou Z, Cheng P, Zaworotko MJ (2019) A gadolinium(III) zeolite-like metal-organicframework-based magnetic resonance thermometer. Chem 5:1609–1618

    CAS  Article  Google Scholar 

  26. 26

    Zhou H, Long JR, Yaghi OM (2012) Introduction to metal−organic frameworks. Chem Rev 112:673–674

    CAS  Article  Google Scholar 

  27. 27

    Batten SR, Champness NR, Chen XM, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O’Keeffe M, Suh MP, Reedijk J (2012) Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 14:3001–3004

    CAS  Article  Google Scholar 

  28. 28

    Wu ZL, Wang YP, Xiong ZK, Ao ZM, Pu SY, Yao G, Lai B (2020) Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Appl Catal B 277:119136e

    Article  Google Scholar 

  29. 29

    Lopez-Cabrelles J, Romero J, Abellan G, Gimenez-Marques M, Palomino M, Valencia S, Rey F, Espallargas GM (2019) Solvent-free synthesis of zifs: a route toward the elusive Fe(II) analogue of ZIF-8. J Am Chem Soc 141:7173–7180

    CAS  Article  Google Scholar 

  30. 30

    Zeng JB, Li YL, Zheng XF, Li ZZ, Zeng T, Duan W, Li Q, Shang X, Dong B (2019) Controllable transformation of aligned ZnO nanorods to ZIF-8 as solid-phase microextraction coatings with tunable porosity, polarity, and conductivity. Anal Chem 91:5091–5097

    CAS  Article  Google Scholar 

  31. 31

    Mao JJ, Tang YX, Wang YD, Huang JY, Dong XL, Chen Z, Lai YK (2019) Particulate matter capturing via naturally dried ZIF-8/graphene aerogels under harsh conditions. iScience 16:133–144

    CAS  Article  Google Scholar 

  32. 32

    Li XL, Liu GL, Xu D, Hong XL, Tsang ESC (2019) Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol. J Mater Chem A 41:1–8

    Google Scholar 

  33. 33

    Santra S, Jativa SD, Kaittanis C, Normand G, Grimm J, Perez JM (2012) Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano 6:7281–7294

    CAS  Article  Google Scholar 

  34. 34

    Bustamante EL, Fernández JL, Zamaro JM (2014) Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J Colloid Interface Sci 424:37–43

    CAS  Article  Google Scholar 

  35. 35

    Zhou L, Lia N, Owens G, Chen ZL (2019) Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chem Eng J 362:628–637

    CAS  Article  Google Scholar 

  36. 36

    Zhao ZH, Zhou ZJ, Bao JF, Wang ZY, Hu J, Chi XQ, Ni KY, Wang RF, Chen XY, Chen Z, Gao JH (2013) Octapod iron oxide nanoparticles as highperformance T2 contrast agents for magnetic resonance imaging. Nat Commun 4:1–7

    CAS  Google Scholar 

  37. 37

    Fossheim SL, Fahlvik AK, Klaveness J, Muller RN (1999) Paramagnetic liposomes as MRI contrast agents: influence of liposomal physicochemical properties on the in vitro relaxivity. Magn Reson Imaging 17:83–89

    CAS  Article  Google Scholar 

  38. 38

    Aime S, Castelli DD, Lawson D, Terreno E (2007) Gd-loaded liposomes as T1, susceptibility, and CEST agents, all in one. J Am Chem Soc 129:2430–2431

    CAS  Article  Google Scholar 

  39. 39

    Yu MX, Zheng J (2015) Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9:6655–6674

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Nos. 21601124, 21671135 and 21701111), Shanghai Sailing Programme (17YF1413700), Ministry of Education of China (PCSIRT_IRT_16R49), and International Joint Laboratory on Resource Chemistry (IJLRC).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jiaomin Lin or Shiping Yang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Joshua Tong.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Shen, J., Lin, J. et al. Zeolitic imidazolate framework nanoparticles loaded with gadolinium chelate as efficient T1 MRI contrast agent. J Mater Sci 56, 7386–7396 (2021). https://doi.org/10.1007/s10853-020-05647-7

Download citation