Robust and ultrasensitive hydrogel sensors enhanced by MXene/cellulose nanocrystals

Abstract

As a new two-dimensional material, MXene has caused extensive research in field of supercapacitor, electromagnetic shielding, strain sensing field due to its excellent mechanical properties and electrical conductivity. MXene with good water dispersibility can be used as an ideal nano-material to enhance the conductivity of hydrogels. However, MXene is easy to accumulate in the hydrogel system, and there are rare articles on MXene hydrogels. In this paper, we combine cellulose nanocrystals (CNCs) and MXene to prepare CNC/MXene nanosheets and take advantage of CNC’s excellent dispersibility in water and the electrostatic repulsion between CNCs to avoid the accumulating of MXene and enhance the mechanical properties of the hydrogel. Based on it, we prepared a physical–chemical double crosslinking and double-network CNC/MXene hydrogel by in situ polymerization and cycle freeze-thaw method. The CNC/MXene hydrogel we prepared exhibited excellent mechanical properties; it could be stretched to 7 times its original length and could reach 1.025 MPa tensile stress. When the compression strain was 80%, the compression stress could reach 1.1 MPa. After unloading the compression pressure, it could rapidly return to its original length within 0.17 s, which would impact greatly on the practical application of CNC/MXene hydrogel. What's more, the conductivity of it was up to 0.4 S/m and the thermal conductivity was 0.38 W/mK. So, the hydrogel prepared by us has a wide range of application prospects in the fields of human motion monitoring, electronic skin, man–machine interface, etc.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1

    Peng Y, Pi M, Zhang X, Yan B, Li Y, Shi L, Ran R (2020) High strength, antifreeze, and moisturizing conductive hydrogel for human-motion detection. Polymer 196:122469. https://doi.org/10.1016/j.polymer.2020.122469

    CAS  Article  Google Scholar 

  2. 2

    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

    CAS  Article  Google Scholar 

  3. 3

    AsmarandeiFundueanuCristeaHarabagiuConstantin IGMVM (2013) Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. J Polym Res 20(11):1–13. https://doi.org/10.1007/s10965-013-0293-3

    CAS  Article  Google Scholar 

  4. 4

    Debnath D, Kim C, Kim SH, Geckeler KE (2010) Solid-state synthesis of silver nanoparticles at room temperature: Poly(vinylpyrrolidone) as a tool. Macromol Rapid Commun 31(6):549–553. https://doi.org/10.1002/marc.200900656

    CAS  Article  Google Scholar 

  5. 5

    Tang N, Peng Z, Guo R, An M, Chen X, Li X, Yang N, Zang J (2017) Thermal Transport in Soft PAAm Hydrogels. Polymers 9(12):688. https://doi.org/10.3390/polym9120688

    CAS  Article  Google Scholar 

  6. 6

    Wang X, Liu Z, Zhang T (2017) Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25):1602790

    Article  Google Scholar 

  7. 7

    Liu S, Li L (2017) Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl Mater Interfaces 9(31):26429–26437

    CAS  Article  Google Scholar 

  8. 8

    Zhang J, Wan L, Gao Y, Fang X, Lu T, Pan L, Xuan F (2019) Highly Stretchable and Self-Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin. Advanced Electronic Materials 5(7):1900285. https://doi.org/10.1002/aelm.201900285

    CAS  Article  Google Scholar 

  9. 9

    Liu Y, Yu J, Guo D, Li Z, Su Y (2020) Ti3C2Tx MXene/graphene nanocomposites: synthesis and application in electrochemical energy storage. J Alloy Compd 815:152403. https://doi.org/10.1016/j.jallcom.2019.152403

    CAS  Article  Google Scholar 

  10. 10

    Kim KH, Tsui MN, Islam MF (2017) Graphene-coated carbon nanotube aerogels remain superelastic while resisting fatigue and creep over − 100 to +500 °C. Chem Mater 29(7):2748–2755

    CAS  Article  Google Scholar 

  11. 11

    Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3(1):1–7

    Article  Google Scholar 

  12. 12

    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460

    CAS  Article  Google Scholar 

  13. 13

    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    CAS  Article  Google Scholar 

  14. 14

    Qi G-Q, Liang C-L, Bao R-Y, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2014) Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide. Sol Energy Mater Sol Cells 123:171–177. https://doi.org/10.1016/j.solmat.2014.01.024

    CAS  Article  Google Scholar 

  15. 15

    Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140

    CAS  Article  Google Scholar 

  16. 16

    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  Article  Google Scholar 

  17. 17

    Chen Y, Wang J, Liu H, Li R, Sun X, Ye S, Knights S (2009) Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochem Commun 11(10):2071–2076

    CAS  Article  Google Scholar 

  18. 18

    Moghadam AD, Omrani E, Menezes PL, Rohatgi PK (2015) Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos B Eng 77:402–420

    Article  Google Scholar 

  19. 19

    Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F (2004) Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J Electrochem Soc 152(1):A229–A235

    Article  Google Scholar 

  20. 20

    Yan Y, Ge X, Liu Z, Wang J-Y, Lee J-M, Wang X (2013) Facile synthesis of low crystalline MoS 2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5(17):7768–7771

    CAS  Article  Google Scholar 

  21. 21

    Zhang M, Su L, Mao L (2006) Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon 44(2):276–283

    CAS  Article  Google Scholar 

  22. 22

    Zhu C, Han TYJ, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6(1):1–8

  23. 23

    Mottet L, Le Cornec D, Noël J-M, Kanoufi F, Delord B, Poulin P, Bibette J, Bremond N (2018) A conductive hydrogel based on alginate and carbon nanotubes for probing microbial electroactivity. Soft Matter 14(8):1434–1441

    CAS  Article  Google Scholar 

  24. 24

    Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25(18):2554–2560

    CAS  Article  Google Scholar 

  25. 25

    Zhuo H, Hu Y, Chen Z, Peng X, Liu L, Luo Q, Yi J, Liu C, Zhong L (2019) A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J Mater Chem A 7(14):8092–8100. https://doi.org/10.1039/c9ta00596j

    CAS  Article  Google Scholar 

  26. 26

    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional Titanium Carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    CAS  Article  Google Scholar 

  27. 27

    Gao L, Li C, Huang W, Mei S, Lin H, Ou Q, Zhang Y, Guo J, Zhang F, Xu S, Zhang H (2020) MXene/Polymer membranes: synthesis, properties, and emerging applications. Chem Mater 32(5):1703–1747. https://doi.org/10.1021/acs.chemmater.9b04408

    CAS  Article  Google Scholar 

  28. 28

    Halim J, Kota S, Lukatskaya MR, Naguib M, Zhao M-Q, Moon EJ, Pitock J, Nanda J, May SJ, Gogotsi Y, Barsoum MW (2016) Synthesis and characterization of 2D Molybdenum Carbide (MXene). Adv Func Mater 26(18):3118–3127. https://doi.org/10.1002/adfm.201505328

    CAS  Article  Google Scholar 

  29. 29

    Lee KH, Zhang YZ, Jiang Q, Kim H, Alkenawi AA, Alshareef HN (2020) Ultrasound-driven two-dimensional Ti3C2Tx MXene hydrogel generator. ACS Nano 14(3):3199–3207. https://doi.org/10.1021/acsnano.9b08462

    CAS  Article  Google Scholar 

  30. 30

    Wang Q, Pan X, Lin C, Gao H, Cao S, Ni Y, Ma X (2020) Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem Eng J 401:126129. https://doi.org/10.1016/j.cej.2020.126129

    CAS  Article  Google Scholar 

  31. 31

    Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature 516(7529):78–81

    CAS  Article  Google Scholar 

  32. 32

    Jiang C, Wu C, Li X, Yao Y, Lan L, Zhao F, Ye Z, Ying Y, Ping J (2019) All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 59:268–276. https://doi.org/10.1016/j.nanoen.2019.02.052

    CAS  Article  Google Scholar 

  33. 33

    Zhao X, Wang LY, Tang CY, Zha XJ, Liu Y, Su BH, Ke K, Bao RY, Yang MB, Yang W (2020) Smart Ti3C2Tx MXene fabric with fast humidity response and Joule heating for healthcare and medical therapy applications. ACS Nano 14(7):8793–8805. https://doi.org/10.1021/acsnano.0c03391

    CAS  Article  Google Scholar 

  34. 34

    Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X (2018) Stretchable Ti3C2T x MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1):56–62

    CAS  Article  Google Scholar 

  35. 35

    Zhang Y, Chen K, Li Y, Lan J, Yan B, Shi L, Ran R (2019) High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor. ACS Appl Mater Interfaces 11(50):47350–47357. https://doi.org/10.1021/acsami.9b16078

    CAS  Article  Google Scholar 

  36. 36

    Wei Y, Xiang L, Ou H, Li F, Zhang Y, Qian Y, Hao L, Diao J, Zhang M, Zhu P, Liu Y, Kuang Y, Chen G (2020) MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv Funct Mater 30(48):2005135. https://doi.org/10.1002/adfm.202005135

    CAS  Article  Google Scholar 

  37. 37

    Li Q, Yin R, Zhang D, Liu H, Chen X, Zheng Y, Guo Z, Liu C, Shen C (2020) Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J Mater Chem A 8(40):21131–21141. https://doi.org/10.1039/d0ta07832h

    CAS  Article  Google Scholar 

  38. 38

    Zhuo H, Hu Y, Tong X, Chen Z, Zhong L, Lai H, Liu L, Jing S, Liu Q, Liu C (2018) A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv Mater 30(18):1706705

    Article  Google Scholar 

  39. 39

    Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244

    CAS  Article  Google Scholar 

  40. 40

    Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82(2):329–336

    Article  Google Scholar 

  41. 41

    Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004) Cellulose nanocrystals reinforced poly (oxyethylene). Polymer 45(12):4149–4157

    Article  Google Scholar 

  42. 42

    Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353(1):116–123. https://doi.org/10.1016/j.jcis.2010.09.035

    CAS  Article  Google Scholar 

  43. 43

    Chang C, Zhang L (2011) Cellulose-based hydrogels: Present status and application prospects. Carbohyd Polym 84(1):40–53. https://doi.org/10.1016/j.carbpol.2010.12.023

    CAS  Article  Google Scholar 

  44. 44

    Di Giorgio L, Martin L, Salgado PR, Mauri AN (2020) Synthesis and conservation of cellulose nanocrystals. Carbohyd Polym 238:116187. https://doi.org/10.1016/j.carbpol.2020.116187

    CAS  Article  Google Scholar 

  45. 45

    Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129(45):13810–13811

    CAS  Article  Google Scholar 

  46. 46

    Pasquini D, de Morais TE, da Silva Curvelo AA, Belgacem MN, Dufresne A (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crops Prod 32(3):486–490

    CAS  Article  Google Scholar 

  47. 47

    Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144

    CAS  Article  Google Scholar 

  48. 48

    Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30

    CAS  Article  Google Scholar 

  49. 49

    Tian W, VahidMohammadi A, Reid MS, Wang Z, Ouyang L, Erlandsson J, Pettersson T, Wågberg L, Beidaghi M, Hamedi MM (2019) Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D Nanocellulose. Adv Mater 31(41):1902977. https://doi.org/10.1002/adma.201902977

    Article  Google Scholar 

  50. 50

    Zeng Z, Wang C, Siqueira G, Han D, Huch A, Abdolhosseinzadeh S, Heier J, Nuesch F, Zhang CJ, Nystrom G (2020) Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv Sci 7(15):2000979. https://doi.org/10.1002/advs.202000979

    CAS  Article  Google Scholar 

  51. 51

    Tang J, Javaid MU, Pan C, Yu G, Berry RM, Tam KC (2020) Self-healing stimuli-responsive cellulose nanocrystal hydrogels. Carbohyd Polym 229:115486. https://doi.org/10.1016/j.carbpol.2019.115486

    CAS  Article  Google Scholar 

  52. 52

    Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134(11):5362–5368

    CAS  Article  Google Scholar 

  53. 53

    Yu H-Y, Zhang H, Song M-L, Zhou Y, Yao J, Ni Q-Q (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9(50):43920–43938

    CAS  Article  Google Scholar 

  54. 54

    Yu Z, Wu P (2020) Biomimetic MXene-Polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation. Adv Mater Technol 5(6):2000065. https://doi.org/10.1002/admt.202000065

    CAS  Article  Google Scholar 

  55. 55

    Cui W, Pi M-h, Li Y-s, Shi L-Y, Ran R (2020) Multimechanism physical cross-linking results in tough and self-healing hydrogels for various applications. ACS Appl Polym Mater 2(8):3378–3389. https://doi.org/10.1021/acsapm.0c00464

    CAS  Article  Google Scholar 

  56. 56

    Sobolčiak P, Ali A, Hassan MK, Helal MI, Tanvir A, Popelka A, Al-Maadeed MA, Krupa I, Mahmoud KA (2017) 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS ONE 12(8):e0183705

    Article  Google Scholar 

  57. 57

    Song M, Yu H-Y, Zhu J, Ouyang Z, Abdalkarim SYH, Tam KC, Li Y (2020) Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem Eng J 398(15):125547. https://doi.org/10.1016/j.cej.2020.125547

    CAS  Article  Google Scholar 

  58. 58

    Saraydin D, Karadaǧ E, Güven O (1995) Acrylamide/maleic acid hydrogels. Polym Adv Technol 6(12):719–726

    CAS  Article  Google Scholar 

  59. 59

    Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  60. 60

    Bao D, Chen M, Wang H, Wang J, Liu C, Sun R (2014) Preparation and characterization of double crosslinked hydrogel films from carboxymethylchitosan and carboxymethylcellulose. Carbohyd Polym 110:113–120

    CAS  Article  Google Scholar 

  61. 61

    Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD, Halim J, Taberna P-L, Barsoum MW, Simon P (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2(8):1–6

    Article  Google Scholar 

  62. 62

    Zhao X, Zha X-J, Tang L-S, Pu J-H, Ke K, Bao R-Y, Liu Z-y, Yang M-B, Yang W (2020) Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res 13(1):255–264. https://doi.org/10.1007/s12274-019-2608-0

    CAS  Article  Google Scholar 

  63. 63

    Yang C, Xu D, Peng W, Li Y, Zhang G, Zhang F, Fan X (2018) Ti2C3Tx nanosheets as photothermal agents for near-infrared responsive hydrogels. Nanoscale 10(32):15387–15392

    CAS  Article  Google Scholar 

  64. 64

    Hu Z-H, Omer AM, Ouyang Xk YuD (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 108:149–157

    CAS  Article  Google Scholar 

  65. 65

    Song M, Yu H, Zhu J, Ouyang Z, Abdalkarim SYH, Tam KC, Li Y (2020) Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem Eng J 398:125547. https://doi.org/10.1016/j.cej.2020.125547

    CAS  Article  Google Scholar 

  66. 66

    Zhang P, Yang XJ, Li P, Zhao Y, Niu QJ (2020) Fabrication of novel MXene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter 16(1):162–169. https://doi.org/10.1039/c9sm01985e

    CAS  Article  Google Scholar 

  67. 67

    Zhang W, Ma J, Zhang W, Zhang P, He W, Chen J, Sun Z (2020) A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes. Nanoscale 12(12):6637–6643

    CAS  Article  Google Scholar 

  68. 68

    Lu Y, Qu X, Zhao W, Ren Y, Si W, Wang W, Wang Q, Huang W, Dong X (2020) (2020) highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 11:1–13

    Google Scholar 

  69. 69

    Wen X, Sun S, Wu P (2020) Dynamic wrinkling of hydrogel-elastomer hybrid microtube enables blood vessel-like hydraulic pressure sensing and flow regulation. Mater Horiz 7(8):2150–2157

    CAS  Article  Google Scholar 

  70. 70

    Chen G, Huang J, Gu J, Peng S, Xiang X, Chen K, Yang X, Guan L, Jiang X, Hou L (2020) Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J Mater Chem A 8(14):6776–6784

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant 51773124, 51403132, 52073183), Sichuan Ministry of Science, Technology Project (Grant 2018GZ0322).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rong Ran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Handling Editor: Stephen Eichhorn.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pi, M., Jiang, L., Wang, Z. et al. Robust and ultrasensitive hydrogel sensors enhanced by MXene/cellulose nanocrystals. J Mater Sci 56, 8871–8886 (2021). https://doi.org/10.1007/s10853-020-05644-w

Download citation