Co3O4 porous nanorod/N-doped reduced graphene oxide composite with fast pseudocapacitive lithium storage for high-performance lithium-ion capacitors

Abstract

The kinetics mismatch between battery type anode and capacitor type cathode for most lithium-ion capacitors (LICs) greatly hampers their overall electrochemical performance. Herein, we construct a high-performance LIC using activated carbon as cathode and pseudocapacitive-assisted Co3O4 porous nanorods (Co3O4 PNRs) /N-doped reduced graphene oxide hybrid (RGO-Co3O4 PNR) as anode to address this issue. In this design, (1) the in situ nitrogen doping enhances the strong coupling between Co3O4 and graphene, leading to good structural stability; (2) Co3O4 PNRs provide sufficient ion transport pathways in the axial direction and shorten diffusion distance in the radial direction, resulting to improved ion dynamics; (3) the integrated 3D hybrid structure with improved conductivity and enhanced surface area endows the RGO-Co3O4 PNR with feasible channels for ion/electron transport and extra adsorption sites for energy storage, which can improve kinetics and capacity synchronously. Consequently, the hybrid electrode shows remarkable specific capacity (1118 mAh g−1 at 0.2 A g−1), impressive rate capability (427 mAh g−1 at 5 A g−1) and long lifespan with a capacity retention of 75% even after 200 continuous cycles at 0.5 A g−1. Significantly, the improved pseudocapacitive contribution should be responsible for fast kinetics and long durability of the electrode. Due to the improved cathode and anode compatibility, the assembled LIC delivers high energy density of 144 Wh kg−1 and 72 Wh kg−1 at 300 W kg−1 and 13 kW kg−1 along with impressive life expectancy.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Zhu X, Liang G, Fu Q, Li R, Chen Y, Bi Y, Pan D, Das R, Lin C, Guo Z (2020) An inverse opal Cu2Nb34O87 anode for high-performance Li+ storage. Chem Commun 56(53):7321–7324. https://doi.org/10.1039/D0CC02016H

    CAS  Article  Google Scholar 

  2. 2

    Fu Q, Cao H, Liang G, Luo L, Chen Y, Murugadoss V, Wu S, Ding T, Lin C, Guo Z (2020) A highly Li+-conductive HfNb24O62 anode material for superior Li+ storage. Chem Commun 56(4):619–622. https://doi.org/10.1039/C9CC07447C

    CAS  Article  Google Scholar 

  3. 3

    Idrees M, Liu L, Batool S, Luo H, Liang J, Xu B, Wang S, Kong J (2019) Cobalt-doping enhancing electrochemical performance of silicon/carbon nanocomposite as highly efficient anode materials in lithium-ion batteries. Eng Sci 6:64–76. https://doi.org/10.30919/es8d798

    Article  Google Scholar 

  4. 4

    Wang X, Zeng X, Cao D (2018) Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials. Eng Sci 1:55–63. https://doi.org/10.30919/es.180325

    Article  Google Scholar 

  5. 5

    Hou C, Hou J, Zhang H, Ma Y, He X, Geng W, Zhang Q (2020) Facile synthesis of LiMn0.75Fe0.25PO4/C nanocomposite cathode materials of lithium-ion batteries through microwave sintering. Eng Sc 11:36–43. https://doi.org/10.30919/es5e1006

    Article  Google Scholar 

  6. 6

    Guan C, Liu J, Wang Y, Mao L, Fan Z, Shen Z, Zhang H, Wang J (2015) Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9(5):5198–5207. https://doi.org/10.1021/acsnano.5b00582

    CAS  Article  Google Scholar 

  7. 7

    Liu C, Zhang C, Song H, Nan X, Fu H, Cao G (2016) MnO nanoparticles with cationic vacancies and discrepant crystallinity dispersed into porous carbon for Li-ion capacitors. J Mater Chem A 4(9):3362–3370. https://doi.org/10.1039/c5ta10002j

    CAS  Article  Google Scholar 

  8. 8

    Yang Z, Guo H, Li X, Wang Z, Wang J, Wang Y, Yan Z, Zhang D (2017) Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors. J Mater Chem A 5(29):15302–15309. https://doi.org/10.1039/c7ta03862c

    CAS  Article  Google Scholar 

  9. 9

    Hou Z, Zhang X, Li X, Zhu Y, Liang J, Qian Y (2017) Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J Mater Chem A 5(2):730–738. https://doi.org/10.1039/C6TA08736A

    CAS  Article  Google Scholar 

  10. 10

    Cai M, Sun X, Chen W, Qiu Z, Chen L, Li X, Wang J, Liu Z, Nie Y (2017) Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode. J Mater Sci 53(1):749–758. https://doi.org/10.1007/s10853-017-1524-5

    CAS  Article  Google Scholar 

  11. 11

    Ren JJ, Su LW, Qin X, Yang M, Wei JP, Zhou Z, Shen PW (2014) Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. J Power Sour 264:108–113. https://doi.org/10.1016/j.jpowsour.2014.04.076

    CAS  Article  Google Scholar 

  12. 12

    Han Q, Chi X, Liu Y, Wang L, Du Y, Ren Y, Liu Y (2019) An inorganic salt reinforced Zn2+-conducting solid-state electrolyte for ultra-stable Zn metal batteries. J Mater Chem A 7(39):22287–22295. https://doi.org/10.1039/c9ta07218g

    CAS  Article  Google Scholar 

  13. 13

    Fu Y, Pei X, Dai Y, Mo D, Lyu S (2019) Three-dimensional graphene-like carbon prepared from CO2 as anode material for high-performance lithium-ion batteries. ES Energy Environ 4:66–73. https://doi.org/10.30919/esee8c292

    Article  Google Scholar 

  14. 14

    Ran F, Yang X, Shao L (2018) Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv Compos Hybrid Mater 1(1):32–55. https://doi.org/10.1007/s42114-017-0021-2

    CAS  Article  Google Scholar 

  15. 15

    Rezvani SJ, Gunnella R, Witkowska A, Mueller F, Pasqualini M, Nobili F, Passerini S, Cicco AD (2017) Is the solid electrolyte interphase an extra-charge reservoir in Li-ion batteries? ACS Appl Mater Interfaces 9(5):4570–4576. https://doi.org/10.1021/acsami.6b12408

    CAS  Article  Google Scholar 

  16. 16

    Sennu P, Aravindan V, Lee Y-S (2017) Marine algae inspired pre-treated SnO2 nanorods bundle as negative electrode for Li-ion capacitor and battery: an approach beyond intercalation. Chem Eng J 324:26–34. https://doi.org/10.1016/j.cej.2017.05.003

    CAS  Article  Google Scholar 

  17. 17

    Luo L, Zhao P, Yang H, Liu B, Zhang J-G, Cui Y, Yu G, Zhang S, Wang C-M (2015) Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries. Nano Lett 15(10):7016–7022. https://doi.org/10.1021/acs.nanolett.5b03047

    CAS  Article  Google Scholar 

  18. 18

    Aravindan V, Lee Y-S (2018) Building next-generation Li-ion capacitors with high energy: an approach beyond intercalation. J Phys Chem Lett 9(14):3946–3958. https://doi.org/10.1021/acs.jpclett.8b01386

    CAS  Article  Google Scholar 

  19. 19

    Yao X, Guo G, Zhao Y, Zhang Y, Tan SY, Zeng Y, Zou R, Yan Q, Zhao Y (2016) Synergistic effect of mesoporous Co3O4 nanowires confined by N-doped graphene aerogel for enhanced lithium storage. Small 12(28):3849–3860. https://doi.org/10.1002/smll.201600632

    CAS  Article  Google Scholar 

  20. 20

    Sennu P, Madhavi S, Aravindan V, Lee Y-S (2020) Co3O4 nanosheets as battery-type electrode for high-energy Li-ion capacitors: a sustained li-storage via conversion pathway. ACS Nano 14(8):10648–10654. https://doi.org/10.1021/acsnano.0c04950

    CAS  Article  Google Scholar 

  21. 21

    Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30. https://doi.org/10.30919/es8d1128

    Article  Google Scholar 

  22. 22

    Li X, Tian X, Yang T, Song Y, Liu Z (2018) Hierarchically multiporous carbon nanotube/Co3O4 composite as an anode material for high-performance lithium-ion batteries. Chem Eur J 24(54):14477–14483. https://doi.org/10.1002/chem.201802715

    CAS  Article  Google Scholar 

  23. 23

    Qiu S, Gu H, Lu G, Liu J, Li X, Fu Y, Yan X, Hu C, Guo Z (2015) Rechargeable Co3O4 porous nanoflake carbon nanotube nanocomposite lithium-ion battery anodes with enhanced energy performances. RSC Adv 5(58):46509–46516. https://doi.org/10.1039/C5RA06642E

    CAS  Article  Google Scholar 

  24. 24

    Wang B, Lu X-Y, Tang Y (2015) Synthesis of snowflake-shaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries. J Mater Chem A 3(18):9689–9699. https://doi.org/10.1039/c5ta00140d

    CAS  Article  Google Scholar 

  25. 25

    Hao W, Chen S, Cai Y, Zhang L, Li Z, Zhang S (2014) Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J Mater Chem A 2(34):13801–13804. https://doi.org/10.1039/C4TA02012J

    CAS  Article  Google Scholar 

  26. 26

    Li X, Tian X, Yang T, Song Y, yiming L, Guo Q, Liu Z, (2018) Two-pot synthesis of one-dimensional hierarchically porous Co3O4 nanorods as anode for lithium-ion battery. J Alloys Compd 735:2446–2452. https://doi.org/10.1016/j.jallcom.2017.12.001

    CAS  Article  Google Scholar 

  27. 27

    Wang J, Wang H, Li F, Xie S, Xu G, She Y, Leung MKH, Liu T (2019) Oxidizing solid co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. J Mater Chem A 7(7):3024–3030. https://doi.org/10.1039/C9TA00045C

    CAS  Article  Google Scholar 

  28. 28

    Li S, Liu Q, Zhou J, Pan T, Gao L, Zhang W, Fan L, Lu Y (2019) Hierarchical Co3O4 nanofiber–carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries. Adv Funct Mater 29(19):1808847. https://doi.org/10.1002/adfm.201808847

    CAS  Article  Google Scholar 

  29. 29

    Yu S-H, Conte DE, Baek S, Lee D-C, Park S-K, Lee KJ, Piao Y, Sung Y-E, Pinna N (2013) Structure-properties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries. Adv Funct Mater 23(35):4293–4305. https://doi.org/10.1002/adfm.201300190

    CAS  Article  Google Scholar 

  30. 30

    Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728. https://doi.org/10.1021/nn200659w

    CAS  Article  Google Scholar 

  31. 31

    Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8(15):1703259. https://doi.org/10.1002/aenm.201703259

    CAS  Article  Google Scholar 

  32. 32

    Guo R, Yue W, Ren Y, Zhou W (2016) Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries. Mater Res Bull 73:102–110. https://doi.org/10.1016/j.materresbull.2015.08.027

    CAS  Article  Google Scholar 

  33. 33

    Kim C, Kim JW, Kim H, Kim DH, Choi C, Jung YS, Park J (2016) Graphene oxide assisted synthesis of self-assembled zinc oxide for lithium-ion battery anode. Chem Mater 28(23):8498–8503. https://doi.org/10.1021/acs.chemmater.5b03587

    CAS  Article  Google Scholar 

  34. 34

    Li M, Wan Y, Huang J-K, Assen AH, Hsiung C-E, Jiang H, Han Y, Eddaoudi M, Lai Z, Ming J, Li L-J (2017) Metal–organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Lett 2(10):2362–2367. https://doi.org/10.1021/acsenergylett.7b00692

    CAS  Article  Google Scholar 

  35. 35

    Guo D, Luo Y, Yu X, Li Q, Wang T (2014) High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8:174–182. https://doi.org/10.1016/j.nanoen.2014.06.002

    CAS  Article  Google Scholar 

  36. 36

    Lei Z, Xu L, Jiao Y, Du A, Zhang Y, Zhang H (2018) Strong coupling of MoS2 nanosheets and nitrogen-doped graphene for high-performance pseudocapacitance lithium storage. Small 14(25):1704410. https://doi.org/10.1002/smll.201704410

    CAS  Article  Google Scholar 

  37. 37

    Chen C, Yang Q, Yang Y, Lv W, Wen Y, Hou P, Wang M, Cheng H (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21(29):3007–3011. https://doi.org/10.1002/adma.200803726

    CAS  Article  Google Scholar 

  38. 38

    Aravindan V, Lee Y-S, Madhavi S (2017) Best practices for mitigating irreversible capacity loss of negative electrodes in Li-ion batteries. Adv Energy Mater 7(17):1602607. https://doi.org/10.1002/aenm.201602607

    CAS  Article  Google Scholar 

  39. 39

    Zhang H, He H, Luan J, Huang X, Tang Y, Wang H (2018) Adjusting the yolk–shell structure of carbon spheres to boost the capacitive K+ storage ability. J Mater Chem A 6(46):23318–23325. https://doi.org/10.1039/C8TA07438K

    CAS  Article  Google Scholar 

  40. 40

    Tian X, Li X, Yang T, Wang K, Wang H, Song Y, Liu Z, Guo Q, Chen C (2017) Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor. Electrochim Acta 247:1060–1071. https://doi.org/10.1016/j.electacta.2017.07.103

    CAS  Article  Google Scholar 

  41. 41

    Wu F, Zhang X, Zhao T, Chen R, Ye Y, Xie M, Li L (2015) Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium-oxygen batteries. J Mater Chem A 3(34):17620–17626. https://doi.org/10.1039/C5TA04673D

    CAS  Article  Google Scholar 

  42. 42

    Liu T, Zhang L, You W, Yu J (2018) Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12):1702407. https://doi.org/10.1002/smll.201702407

    CAS  Article  Google Scholar 

  43. 43

    Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from perilla frutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317. https://doi.org/10.1016/j.jpowsour.2016.12.022

    CAS  Article  Google Scholar 

  44. 44

    Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26(9):1428–1436. https://doi.org/10.1002/adfm.201504695

    CAS  Article  Google Scholar 

  45. 45

    Wang D, Yu Y, He H, Wang J, Zhou W, Abruña HD (2015) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2):1775–1781. https://doi.org/10.1021/nn506624g

    CAS  Article  Google Scholar 

  46. 46

    Chen M, Xia X, Yin J, Chen Q (2015) Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochim Acta 160:15–21. https://doi.org/10.1016/j.electacta.2015.02.055

    CAS  Article  Google Scholar 

  47. 47

    Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem Int Ed 52(25):6417–6420. https://doi.org/10.1002/anie.201301622

    CAS  Article  Google Scholar 

  48. 48

    Fang D, Li L, Xu W, Li G, Li G, Wang N, Luo Z, Xu J, Liu L, Huang C, Liang C, Ji Y (2013) Self-assembled hairy ball-like Co3O4 nanostructures for lithium ion batteries. J Mater Chem A 1(42):13203–13208. https://doi.org/10.1039/c3ta12310c

    CAS  Article  Google Scholar 

  49. 49

    Chen Y, Wu T, Chen W, Zhang W, Zhang L, Zhu Z, Shao M, Zheng B, Li S, Zhang W, Pei W-B, Wu J, Huo F (2020) Co3O4 nanoparticles embedded in nitrogen-doped graphitic carbon fibers as a free-standing electrode for promotion of lithium ion storage with capacitive contribution. Chem Commun 56(43):5767–5770. https://doi.org/10.1039/D0CC00947D

    CAS  Article  Google Scholar 

  50. 50

    Wu D, Wang C, Wu H, Wang S, Wang F, Chen Z, Zhao T, Zhang Z, Zhang LY, Li CM (2020) Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries. Carbon 163:137–144. https://doi.org/10.1016/j.carbon.2020.03.007

    CAS  Article  Google Scholar 

  51. 51

    Liu W, Yang H, Zhao L, Liu S, Wang H, Chen S (2016) Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochim Acta 207:293–300. https://doi.org/10.1016/j.electacta.2016.05.006

    CAS  Article  Google Scholar 

  52. 52

    Yan C, Chen G, Sun J, Zhou X, Lv C (2016) A novel anode comprised of C&N co-doped Co3O4 hollow nanofibres with excellent performance for lithium-ion batteries. Phys Chem Chem Phys 18(29):19531–19535. https://doi.org/10.1039/C6CP02660E

    CAS  Article  Google Scholar 

  53. 53

    Yin D, Huang G, Sun Q, Li Q, Wang X, Yuan D, Wang C, Wang L (2016) RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim Acta 215:410–419. https://doi.org/10.1016/j.electacta.2016.08.110

    CAS  Article  Google Scholar 

  54. 54

    Rai AK, Gim J, Anh LT, Kim J (2013) Partially reduced Co3O4/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochim Acta 100:63–71. https://doi.org/10.1016/j.electacta.2013.03.140

    CAS  Article  Google Scholar 

  55. 55

    Pan L, Zhao H, Shen W, Dong X, Xu J (2013) Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for li-ion batteries. J Mater Chem A 1(24):7159–7166. https://doi.org/10.1039/C3TA01498C

    CAS  Article  Google Scholar 

  56. 56

    Xu X, Tian X, Li X, Yang T, He Y, Wang K, Song Y, Liu Z (2019) Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors. Appl Surf Sci 465:635–642. https://doi.org/10.1016/j.apsusc.2018.09.221

    CAS  Article  Google Scholar 

  57. 57

    Chen M, Chao D, Liu J, Yan J, Zhang B, Huang Y, Lin J, Shen ZX (2017) Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin Tin monoxide nanoarrays. Adv Funct Mater 27(12):1606232. https://doi.org/10.1002/adfm.201606232

    CAS  Article  Google Scholar 

  58. 58

    Ge P, Cao X, Hou H, Li S, Ji X (2017) Rodlike Sb2Se3 wrapped with carbon: The exploring of electrochemical properties in sodium-ion batteries. ACS Appl Mater Interfaces 9(40):34979–34989. https://doi.org/10.1021/acsami.7b10886

    CAS  Article  Google Scholar 

  59. 59

    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614. https://doi.org/10.1039/C3EE44164D

    CAS  Article  Google Scholar 

  60. 60

    Yang C, Lan J-L, Liu W-X, Liu Y, Yu Y-H, Yang X-P (2017) High-performance li-ion capacitor based on an activated carbon cathode and well-dispersed ultrafine TiO2 nanoparticles embedded in mesoporous carbon nanofibers anode. ACS Appl Mater Interfaces 9(22):18710–18719. https://doi.org/10.1021/acsami.7b02068

    CAS  Article  Google Scholar 

  61. 61

    Zhang H, Wang Y, Zhao W, Zou M, Chen Y, Yang L, Xu L, Wu H, Cao A (2017) MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl Mater Interfaces 9(43):37813–37822. https://doi.org/10.1021/acsami.7b12095

    CAS  Article  Google Scholar 

  62. 62

    Zhang S, Li C, Zhang X, Sun X, Wang K, Ma Y (2017) High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode. ACS Appl Mater Interfaces 9(20):17136–17144. https://doi.org/10.1021/acsami.7b03452

    CAS  Article  Google Scholar 

  63. 63

    Idrees F, Hou J, Cao C, Butt FK, Shakir I, Tahir M, Idrees F (2017) Template-free synthesis of highly ordered 3d-hollow hierarchical Nb2O5 superstructures as an asymmetric supercapacitor by using inorganic electrolyte. Electrochim Acta 216:332–338. https://doi.org/10.1016/j.electacta.2016.09.031

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1610252, 51602322, 21576277), Natural Science Foundation of Shanxi Province (201801D221371) and the Outstanding PhD. Program of Shanxi Province (SQ2019001).

Author information

Affiliations

Authors

Contributions

Jing Shi was involved in writing original draft, data curation, methodology, and resources. Xiao Li was involved in data curation. Tao Yang was involved in methodology. Xiaodong Tian was involved in software, validation, writing—review & editing, and funding acquisition. Yequn Liu and Shiwen Lei were involved in investigation and funding acquisition. Yan Song was involved in supervision, writing—review & editing, funding acquisition, and project administration. Zhanjun Liu was involved in supervision and validation.

Corresponding authors

Correspondence to Xiaodong Tian or Yan Song.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Joshua Tong.

Supplementary Information

Supplementary material 2 (MP4 633 kb)

Supplementary material 1 (DOCX 2175 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Li, X., Yang, T. et al. Co3O4 porous nanorod/N-doped reduced graphene oxide composite with fast pseudocapacitive lithium storage for high-performance lithium-ion capacitors. J Mater Sci 56, 7520–7532 (2021). https://doi.org/10.1007/s10853-020-05640-0

Download citation