Polymer-based lightweight materials for electromagnetic interference shielding: a review

Abstract

The rapid development of modern electronic technology has provided high efficiency for social production, but it also brings serious electromagnetic interference (EMI). Although traditional metals and their alloys can serve as good electromagnetic shielding materials, their heavy weight, high cost as well as poor corrosion resistance limit their application in EMI shielding. Therefore, electromagnetic shielding materials with lightweight are gradually attracting more and more attention to meet the trend of lightweight and highly integrated electronic equipment. Polymers are widely used in EMI shielding materials because of their unique characteristics, such as lightweight, high flexibility and excellent corrosion resistance. This review is focused on the well-studied polymer-based lightweight composites, with the aim of providing a comprehensive review of the existing EMI shielding mechanism, preparation and application of polymer-based lightweight composites, along with retrieving new general insights into the advantages and limitations associated with the different measurement and prediction techniques, as well as the EMI shielding effectiveness of polymer-based lightweight composites including metal-containing composites, intrinsic conductive polymers, filler-containing polymers and newly discovered materials. These lightweight materials with fine EMI shielding performance will find more and more potential applications in communications, electronics, aerospace, military, environmental protection, etc.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

References

  1. 1

    Cao M, Song W, Hou Z, Wen B, Yuan J (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48:788–796

    CAS  Google Scholar 

  2. 2

    Liang J, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    CAS  Google Scholar 

  3. 3

    Sun R, Zhang H, Liu J et al (2017) Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv Funct Mater 27:1702807

    Google Scholar 

  4. 4

    Chen Y, Zhang H, Yang Y, Wang M, Cao A, Yu Z-Z (2016) High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater 26:447–455

    CAS  Google Scholar 

  5. 5

    Thomassin J, Jerome C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mat Sci Eng R 74:211–232

    Google Scholar 

  6. 6

    Chaudhary A, Kumar R, Teotia S, Dhawan SK, Dhakate SR, Kumari S (2017) Integration of MCMBs/MWCNTs with Fe3O4 in a flexible and light weight composite paper for promising EMI shielding applications. J Mater Chem C 5:322–332

    CAS  Google Scholar 

  7. 7

    Zas E, Halzen F, Stanev T (1992) Electromagnetic pulses from high-energy showers: implications for neutrino detection. Phys Rev D Part Fields 45:362–376

    CAS  Google Scholar 

  8. 8

    Vinson J, Liou J (1998) Electrostatic discharge in semiconductor devices: an overview. P IEEE 86:399–420

    Google Scholar 

  9. 9

    Deltuva R, Virbalis JA (2012) Investigation of electric field in the outdoor switch-gear. Prz Elektrotech 88:205–207

    Google Scholar 

  10. 10

    Radwan RM, Mahdy AM, Abdel-Salam M, Samy MM (2013) Electric field mitigation under extra high voltage power lines. IEEE Trans Dielectr Electr Insul 20:54–62

    Google Scholar 

  11. 11

    Ren S, Guo S, Liu X, Liu Q (2016) Shielding effectiveness of double-layer magnetic shield of current comparator under radial disturbing magnetic field. IEEE Trans Magn 52:9401907

    Google Scholar 

  12. 12

    Yoshizawa K, Noguchi S, Igarashi H (2011) Influence of magnetic property of ferromagnetic shield on high field magnet analysis. IEEE Trans Appl Supercond 21:2088–2091

    CAS  Google Scholar 

  13. 13

    Chen Z, Xu C, Ma C, Ren W, Cheng H (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300

    CAS  Google Scholar 

  14. 14

    Chung D (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    CAS  Google Scholar 

  15. 15

    Shahzad F, Alhabeb M, Hatter CB et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    CAS  Google Scholar 

  16. 16

    Carol T, Mohammed J, Basandrai D et al (2020) X-band shielding of electromagnetic interference (EMI) by Co2Y barium hexaferrite, bismuth copper titanate (BCTO), and polyaniline (PANI) composite. J Magn Magn Mater 501:166433

    Google Scholar 

  17. 17

    Yu C, Zhu S, Xing C et al (2020) Fe nanoparticles and CNTs co-decorated porous carbon/graphene foam composite for excellent electromagnetic interference shielding performance. J Alloy Compd 820:153108

    CAS  Google Scholar 

  18. 18

    Lei X, Zhang X, Song A et al (2020) Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@CNT/sodium alginate/polydimethylsiloxane flexible composite. Compos Part A Appl S 130:105762

    CAS  Google Scholar 

  19. 19

    Zhang H, Zhang G, Gao Q, Zong M, Wang M, Qin J (2020) Electrically electromagnetic interference shielding microcellular composite foams with 3D hierarchical graphene-carbon nanotube hybrids. Compos Part A Appl S 130:105773

    CAS  Google Scholar 

  20. 20

    Feng D, Xu D, Wang Q, Liu P (2019) Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. J Mater Chem C 7:7938–7946

    CAS  Google Scholar 

  21. 21

    Xu D, Chen W, Liu P (2020) Enhanced electromagnetic interference shielding and mechanical properties of segregated polymer/carbon nanotube composite via selective microwave sintering. Compos Sci Technol 199:108355

    CAS  Google Scholar 

  22. 22

    Liu Z, Yang Q, Wang D et al (2019) A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv Energy Mater 9:1902473

    CAS  Google Scholar 

  23. 23

    Liu Z, Chen G (2020) Advancing flexible thermoelectric devices with polymer composites. Adv Mater Technol 5:2000049

    CAS  Google Scholar 

  24. 24

    Zhang K, Gu X, Dai Q, Yuan B, Yan Y, Guo M (2019) Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance. Vacuum 170:108990

    CAS  Google Scholar 

  25. 25

    Dogan S, Kayacan O, Goren A (2019) A lightweight, strength and electromagnetic shielding polymer composite structure for infant carrier strollers. Polym Compos 40:4559–4572

    CAS  Google Scholar 

  26. 26

    Tan Y, Li J, Cai J et al (2019) Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites. Compos Part B Eng 177:107378

    CAS  Google Scholar 

  27. 27

    Chiu H, Lin M, Chen C (1997) Near-field shielding and reflection characteristics of anisotropic laminated planar composites. IEEE T Electromagn C 39:332–339

    Google Scholar 

  28. 28

    Song Y, Wang H, Zheng Y, Xu C (2002) Preparation of high conducting polyaniline films and study on their electromagnetic shielding properties. Acta Polym Sin 1:92–95

    Google Scholar 

  29. 29

    Sun Y, Long N, Sidorov G, Fang J, Badcock R, Jiang Z (2021) Shielding effect of (RE)Ba2Cu3O7-d-coated conductors on eddy current loss of adjacent metal layers under AC magnetic fields with various orientations. IEEE Trans Appl Supercond 31:3011390

    Google Scholar 

  30. 30

    Carey AL, Hurst CA (1977) The Fermi method of quantizing the electromagnetic field as a model for quantum field theory. J Math Phys 18:1553–1561

    Google Scholar 

  31. 31

    Mikropoulos P, Tsovilis T (2012) Estimation of the shielding performance of overhead transmission lines: the effects of lightning attachment model and lightning crest current distribution. IEEE T Dielectr Electr Insul 19:2155–2164

    Google Scholar 

  32. 32

    Singh AK, Shishkin A, Koppel T, Gupta N (2018) A review of porous lightweight composite materials for electromagnetic interference shielding. Compos Part B Eng 149:188–197

    CAS  Google Scholar 

  33. 33

    Zhang N, Zhao R, He D et al (2019) Lightweight and flexible Ni-Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding. J Alloy Compd 784:244–255

    CAS  Google Scholar 

  34. 34

    Sankaran S, Deshmukh K, Ahamed MB, Pasha SK (2018) Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos Part A Appl Sci 114:49–71

    CAS  Google Scholar 

  35. 35

    Wanasinghe D, Aslani F (2019) A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos Part B Eng 176:107207

    CAS  Google Scholar 

  36. 36

    Matula RA (1979) Electrical resistivity of copper, gold, palladium, and silver. J Phys Chem Ref Data 8:1147–1298

    CAS  Google Scholar 

  37. 37

    Gupta S, Tai NH (2019) Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152:159–187

    CAS  Google Scholar 

  38. 38

    Mederos-Henry F, Hermans S, Huynen I (2019) Microwave characterization of metal-decorated carbon nanopowders using a single transmission line. J Nanomater 2019:3280461

    Google Scholar 

  39. 39

    Wang LW, Tamainot Z, Metcalf SJ, Critoph RE, Wang RZ (2010) Anisotropic thermal conductivity and permeability of compacted expanded natural graphite. Appl Therm Eng 30:1805–1811

    CAS  Google Scholar 

  40. 40

    Calebrese C, Eisman GA, Lewis DJ, Schadler LS (2010) Swelling and related mechanical and physical properties of carbon nanofiber filled mesophase pitch for use as a bipolar plate material. Carbon 48:3939–3946

    CAS  Google Scholar 

  41. 41

    Thomassin JM, Jérôme C, Pardoen T, Bailly C, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R 74:211–232

    Google Scholar 

  42. 42

    Li H, Jing L, Ngoh ZL et al (2018) Engineering of high-density thin-layer graphite foam-based composite architectures with superior compressibility and excellent electromagnetic interference shielding performance. ACS Appl Mater Inter 10:41707–41716

    CAS  Google Scholar 

  43. 43

    Tzeng SS, Chang FY (2001) EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mat Sci Eng A Struct 302:258–267

    Google Scholar 

  44. 44

    Kim Y, Park S, Seo Y (2015) Enhanced X-ray shielding ability of polymer-nonleaded metal composites by multilayer structuring. Ind Eng Chem Res 54:5968–5973

    CAS  Google Scholar 

  45. 45

    Jou WS, Wu TL, Chiu SK, Cheng WH (2001) Electromagnetic shielding of nylon-66 composites applied to laser modules. J Electron Mater 30:1287–1293

    CAS  Google Scholar 

  46. 46

    Panwar V, Park J, Park S, Kumar S, Mehra RM (2010) Electrical, dielectric, and electromagnetic shielding properties of polypropylene-graphite composites. J Appl Polym Sci 115:1306–1314

    CAS  Google Scholar 

  47. 47

    Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746

    CAS  Google Scholar 

  48. 48

    Lee J, Liu Y, Liu Y, Park SJ, Park M, Kim HY (2017) Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J Mater Chem C 5:7853–7861

    CAS  Google Scholar 

  49. 49

    Hu XS, Shen Y (2017) Fabrication of novel polyaniline/flowerlike copper monosulfide composites with enhanced electromagnetic interference shielding effectiveness. J Appl Polym Sci 134:45232

    Google Scholar 

  50. 50

    Xu Z, Hai H (2014) Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. J Alloy Compd 617:207–213

    CAS  Google Scholar 

  51. 51

    Wu G, Huang X, Dou Z, Su C, Jiang L (2007) Electromagnetic interfering shielding of aluminum alloy-cenospheres composite. J Mater Sci 42:2633–2636. https://doi.org/10.1007/s10853-006-1347-2

    CAS  Google Scholar 

  52. 52

    Kim WM, Ku DY, Lee IK, Yong WS, Lee KS (2005) The electromagnetic interference shielding effect of indium-zinc oxide/silver alloy multilayered thin films. Thin Solid Films 473:315–320

    CAS  Google Scholar 

  53. 53

    Ji K, Zhao H, Zhang J, Chen J, Dai Z (2014) Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs. Appl Surf Sci 311:351–356

    CAS  Google Scholar 

  54. 54

    Simkin VA, Chernousova NN, Yakimova NP (2002) Metrological assurance of measurements of the electromagnetic parameters of ferromagnetic film materials at high frequencies. Meas Tech 45:1271–1273

    Google Scholar 

  55. 55

    Fox RT, Wani V, Howard KE, Bogle A, Kempel L (2008) Conductive polymer composite materials and their utility in electromagnetic shielding applications. J Appl Polym Sci 107:2558–2566

    CAS  Google Scholar 

  56. 56

    Yang C, Pan F, Chen X, Luo N (2017) Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys. Appl Phys A Mater 123:400

    Google Scholar 

  57. 57

    Liu L, Chen X, Wang J et al (2019) Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys. J Mater Sci Technol 35:1074–1080

    Google Scholar 

  58. 58

    Luo Z, Chen X, Song K et al (2019) Effect of alloying element on electromagnetic interference shielding effectiveness of binary magnesium alloys. Acta Metall Sin Engl 32:817–824

    CAS  Google Scholar 

  59. 59

    Su Y, Zhou B, Liu L, Lian J, Li G (2015) Electromagnetic shielding and corrosion resistance of electroless Ni-P and Ni-P-Cu coatings on polymer/carbon fiber composites. Polym Compos 36:923–930

    CAS  Google Scholar 

  60. 60

    Guan DG, Sun CM, Lin JH, Sun Y, Xu GL, Lei T (2011) Preparation by electroless plating and electromagnetic shielding effectiveness of Ni-Cu-coated calcium-magnesium silicate whisker. Adv Mater Res 189–193:400–403

    Google Scholar 

  61. 61

    Dou Z, Wu G, Huang X, Sun D, Jiang L (2007) Electromagnetic shielding effectiveness of aluminum alloy-fly ash composites. Compos Part A Appl Sci 38:186–191

    Google Scholar 

  62. 62

    Kim JT, Park CW, Kim BJ (2017) A study on synergetic EMI shielding behaviors of Ni-Co alloy-coated carbon fibers-reinforced composites. Synth Met 223:212–217

    CAS  Google Scholar 

  63. 63

    Ren W, Zhu HX, Yang YQ et al (2020) Flexible and robust silver coated non-woven fabric reinforced waterborne polyurethane films for ultra-efficient electromagnetic shielding. Compos Part B Eng 184:107745

    CAS  Google Scholar 

  64. 64

    Shu MT, Zhang P, Ding X et al (2019) Low melting point alloy segregated network construction in thermosetting polymer matrix for the electromagnetic interference shielding and thermal conductivity enhancement. Mater Res Express 6:115352

    Google Scholar 

  65. 65

    Kim H, Park S, Kim S, Seo Y (2019) Microwave absorption and shielding property of Fe-Si-Al alloy/MWCNT/polymer nanocomposites. Langmuir 35:6950–6955

    CAS  Google Scholar 

  66. 66

    Zhao HH, Ji KJ, Liu TT, Xu YS, Dai ZD (2014) Electrophoretic deposition of foam Ni/CNT composites and their electromagnetic interference shielding performance. Appl Mech Mater 461:436–444

    CAS  Google Scholar 

  67. 67

    Kumar R, Kumari S, Dhakate SR (2015) Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness. Appl Nanosci 5:553–561

    CAS  Google Scholar 

  68. 68

    Yang QQ, Qian WX, Liu JY, Chen M, Li H, Zhang Y (2017) Electromagnetic shielding effect of aluminum foam in 10–500 kV electrical substations. Mater Sci Forum 898:2378–2383

    Google Scholar 

  69. 69

    Liu PS, Cui G (2015) Characterization of the electromagnetic shielding and compressive behavior of a highly porous titanium foam with spherical pores. J Mater Res 30:3510–3517

    CAS  Google Scholar 

  70. 70

    Haneczok G, Wroczyński R, Kwapuliński P, Chrobak A, Stoklosa Z, Rasek J (2009) Electro/magnetic shielding effectiveness of soft magnetic Fe80Nb6B14 amorphous alloy. J Mater Process Tech 209:2356–2360

    CAS  Google Scholar 

  71. 71

    Du SG, Cui HP, Yan J, Wang MQ (2012) Study of the electromagnetic shielding efficiency of Ni-Cu-P amorphous alloy film on the surface of PVC. Adv Mater Res 452–453:101–105

    Google Scholar 

  72. 72

    Chrobak A, Kaleta A, Kwapulinski P, Kubisztal M, Haneczok G (2011) Magnetic shielding effectiveness of iron-based amorphous alloys and nanocrystalline composites. IEEE Trans Magn 48:1512–1515

    Google Scholar 

  73. 73

    Huang SW, Yi XS, Chen GH, Deng M, Tang MS (2011) Electromagnetic shielding effectiveness of cement based materials with scrap tires wire-FeCuNbSiB amorphous alloy powder. Adv Mater Res 194–196:886–889

    Google Scholar 

  74. 74

    An Z, Zhang X, Li H (2015) A preliminary study of the preparation and characterization of shielding fabric coated by electrical deposition of amorphous Ni-Fe-P alloy. J Alloy Compd 621:99–103

    CAS  Google Scholar 

  75. 75

    Joo J, Epstein AJ (1994) Electromagnetic radiation shielding by intrinsically conducting polymers. Appl Phys Lett 65:2278–2280

    CAS  Google Scholar 

  76. 76

    Naishadham K (1992) Shielding effectiveness of conductive polymers. IEEE T Electromagn C 34:47–50

    Google Scholar 

  77. 77

    Zhang F, Guang S, Wei G et al (2016) Controllable preparation of a soluble trapezoidal polyacetylene with broadband absorption by a one-step strategy. J Appl Polym Sci 133:44096

    Google Scholar 

  78. 78

    Wan C, Li J (2017) Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole. Carbohydr Polym 161:158–165

    CAS  Google Scholar 

  79. 79

    Erdoğan MK, Karakışla M, Saçak M (2018) Polypyrrole and silver particles coated poly(ethylene terephthalate) nonwoven composite for electromagnetic interference shielding. J Compos Mater 52:1353–1362

    Google Scholar 

  80. 80

    Gong M, Sun S, Sun L, Tian A, Li Q (2019) Simulation and experimentation of wide frequency electromagnetic shielding coating used for carbon fiber composite materials of track vehicles. Int J Mod Phys B 33:1–3

    Google Scholar 

  81. 81

    Ruckenstein E, Park JS (1991) The electromagnetic interference shielding of polypyrrole impregnated conducting polymer composites. Polym Compos 12:289–292

    CAS  Google Scholar 

  82. 82

    Li S, Huang Y, Zhang N, Zong M, Liu P (2018) Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material. J Alloy Compd 774:532–539

    Google Scholar 

  83. 83

    Preetam B, Shivani K, Preeti G, Gairola S (2018) Exceptional electromagnetic radiation shielding performance and dielectric properties of surfactant assisted polypyrrole-carbon allotropes composites. Radiat Phys Chem 151:156–163

    Google Scholar 

  84. 84

    Sambyal P, Dhawan SK, Gairola P, Chauhan SS, Gairola SP (2018) Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-band. Curr Appl Phys 18:611–618

    Google Scholar 

  85. 85

    Gairola P, Purohit LP, Gairola SP, Bhardwaj P, Kaushik S (2019) Enhanced electromagnetic absorption in ferrite and tantalum pentoxide based polypyrrole nanocomposite. Prog Nat Sci 29:170–176

    CAS  Google Scholar 

  86. 86

    Gairola P, Gairola SP, Kumar V, Singh K, Dhawan SK (2016) Barium ferrite and graphite integrated with polyaniline as effective shield against electromagnetic interference. Synth Met 221:326–331

    CAS  Google Scholar 

  87. 87

    Kim BR, Lee HK, Park SH, Kim HK (2011) Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films 519:3492–3496

    CAS  Google Scholar 

  88. 88

    Saini P, Choudhary V, Sood KN, Dhawan SK (2009) Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J Appl Polym Sci 113:3146–3155

    CAS  Google Scholar 

  89. 89

    Lee CY, Song HG, Jang KS, Oh EJ, Epstein AJ, Joo J (1999) Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth Met 102:1346–1349

    CAS  Google Scholar 

  90. 90

    Ghasemi H, Sundararaj U (2012) Electrical properties of in situ polymerized polystyrene/polyaniline composites: the effect of feeding ratio. Synth Met 162:1177–1183

    CAS  Google Scholar 

  91. 91

    Belaabed B, Lamouri S, Wojkiewicz JL (2011) Curing kinetics, thermomechanical and microwave behaviors of PANI-doped BSA/epoxy resin composites. Polym J 43:683–691

    CAS  Google Scholar 

  92. 92

    Jing X, Wang Y, Zhang B (2010) Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings. J Appl Polym Sci 98:2149–2156

    Google Scholar 

  93. 93

    Araujo JR, Adamo CB, Paoli M (2011) Conductive composites of polyamide-6 with polyaniline coated vegetal fiber. Chem Eng J 174:425–431

    CAS  Google Scholar 

  94. 94

    Liu P, Lin L, Yao Z, Zhou J, Du M, Yao T (2016) Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites. J Mater Sci-Mater Electron 27:7776–7787

    CAS  Google Scholar 

  95. 95

    Li B, Weng X, Wu G, Zhang Y, Lv X, Gu G (2017) Synthesis of Fe3O4/polypyrrole/polyaniline nanocomposites by in-situ method and their electromagnetic absorbing properties. J Saudi Chem Soc 21:466–472

    CAS  Google Scholar 

  96. 96

    Rehman S, Liu J, Ahmed R, Bi H (2019) Synthesis of composite of ZnO spheres with polyaniline and their microwave absorption properties. J Saudi Chem Soc 23:385–391

    Google Scholar 

  97. 97

    Hong X, Xue Y, Wang X et al (2015) A novel ternary hybrid electromagnetic wave-absorbing composite based on BaFe11.92(LaNd)0.04O19-titanium dioxide/multiwalled carbon nanotubes/polythiophene. Compos Sci Technol 117:215–224

    CAS  Google Scholar 

  98. 98

    Iqbal S, Shah J, Kotnala RK, Ahmad S (2018) Highly efficient low cost EMI shielding by barium ferrite encapsulated polythiophene nanocomposite. J Alloy Compd 779:487–496

    Google Scholar 

  99. 99

    Li L, Liu S, Lu L (2017) Synthesis and significantly enhanced microwave absorption properties of cobalt ferrite hollow microspheres with protrusions/polythiophene composites. J Alloy Compd 722:158–165

    CAS  Google Scholar 

  100. 100

    Jie Z, Yu X, Le Z, Jian Y, Yan H (2013) Preparation and characterization of an electromagnetic material: the graphene nanosheet/polythiophene composite. Synth Met 181:110–116

    Google Scholar 

  101. 101

    Swathy TS, Antony MJ (2020) Tangled silver nanoparticles embedded polythiophene-functionalized multiwalled carbon nanotube nanocomposites with remarkable electrical and thermal properties. Polymer 189:122171

    CAS  Google Scholar 

  102. 102

    Kathirgamanathan P (1993) Unusual electromagnetic shielding characteristics of inherently conducting polymer-coated metal powder/polymer composites. J Mater Chem 3:259–262

    CAS  Google Scholar 

  103. 103

    Valles C, Zhang X, Cao J et al (2019) Graphene/polyelectrolyte layer-by-layer coatings for electromagnetic interference shielding. ACS Appl Nano Mater 2:5272–5281

    CAS  Google Scholar 

  104. 104

    Sambyal P, Noh SJ, Hong JP et al (2019) FeSiAl/metal core shell hybrid composite with high-performance electromagnetic interference shielding. Compos Sci Technol 172:66–73

    CAS  Google Scholar 

  105. 105

    Kim BJ, Bae K, Lee YS, An K, Park S (2014) EMI shielding behaviors of Ni-coated MWCNTs-filled epoxy matrix nanocomposites. Surf Coat Technol 242:125–131

    CAS  Google Scholar 

  106. 106

    Lee T, Lee S, Jeong YG (2016) Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl Mater Interface 8:13123–13132

    CAS  Google Scholar 

  107. 107

    Zeng Z, Chen M, Pei Y et al (2017) Ultra-light and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl Mater Inter 9:32211–32219

    CAS  Google Scholar 

  108. 108

    Fang F, Li Y, Xiao H, Hu N, Fu S (2016) Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material. J Mater Chem C 4:4193–4203

    CAS  Google Scholar 

  109. 109

    Kausar A, Ahmad S, Salman SM (2017) Effectiveness of polystyrene/carbon nanotube composite in electromagnetic interference shielding materials: a review. Polym Plast Technol Eng 56:1027–1042

    CAS  Google Scholar 

  110. 110

    Kausar A, Rafique I, Muhammad B (2017) Electromagnetic interference shielding of polymer/nanodiamond, polymer/carbon nanotube, and polymer/nanodiamond-carbon nanotube nanobifiller composite: a review. Polym Plast Technol Eng 56:347–363

    CAS  Google Scholar 

  111. 111

    Luo XC, Chung DD (1999) Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos Part B Eng 30:227–231

    Google Scholar 

  112. 112

    Chandra RB, Shivamurthy B, Kulkarni SD, Kumar MS (2019) Hybrid polymer composites for EMI shielding application-a review. Mater Res Express 6:082008

    CAS  Google Scholar 

  113. 113

    Chang H, Yeh Y, Huang K (2010) Electromagnetic shielding by composite films prepared with carbon fiber, Ni nanoparticles, and multi-walled carbon nanotubes in polyurethane. Mater Trans 51:1145–1149

    CAS  Google Scholar 

  114. 114

    Frackowiak S, Ludwiczak J, Leluk K, Orzechowski K, Kozlowski M (2015) Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding. Mater Des 65:749–756

    CAS  Google Scholar 

  115. 115

    Im JS, Kim JG, Lee SH, Lee YS (2010) Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference. Colloid Surf A 364:151–157

    CAS  Google Scholar 

  116. 116

    Lakshmi K, John H, Mathew KT, Joseph R, George KE (2009) Microwave absorption, reflection and EMI shielding of PU-PANI composite. Acta Mater 57:371–375

    CAS  Google Scholar 

  117. 117

    Patole A, Lubineau G (2015) Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites. Carbon 81:720–730

    CAS  Google Scholar 

  118. 118

    Li P, Du D, Guo L, Guo Y, Ouyang J (2016) Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J Mater Chem C 4:6525–6532

    CAS  Google Scholar 

  119. 119

    Lee SH, Yu S, Shahzad F et al (2017) Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Compos Sci Technol 144:57–62

    CAS  Google Scholar 

  120. 120

    Yan W, Guan H, Dong C, Xiao X, Wang Y (2015) Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram Int 42:936–942

    Google Scholar 

  121. 121

    Ghamdi A, Hartomy O, Solamy F et al (2016) Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber. Compos Part B Eng 96:231–241

    Google Scholar 

  122. 122

    Zou L, Zhang S, Li X, Lan C, Qiu Y, Ma Y (2016) Step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding. Adv Mater Interfaces 3:1500476

    Google Scholar 

  123. 123

    Zhu S, Cheng Q, Yu C et al (2020) Flexible Fe3O4/graphene foam/poly dimethylsiloxane composite for high-performance electromagnetic interference shielding. Compos Sci Technol 189:108012

    CAS  Google Scholar 

  124. 124

    Huang L, Li J, Li Y, Heb X, Yuan Y (2019) Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Nanoscale 11:8616–8625

    CAS  Google Scholar 

  125. 125

    Cao M, Han C, Wang X et al (2018) Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J Mater Chem C 6:4586–4602

    CAS  Google Scholar 

  126. 126

    Sun J, Li L, Yu R et al (2020) Synthesis and microwave absorption properties of sulfur-free expanded graphite/Fe3O4 composites. Molecules 25:3044

    CAS  Google Scholar 

  127. 127

    Wang L, Qiu H, Liang C et al (2019) Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514

    CAS  Google Scholar 

  128. 128

    Yang SQ, Li WZ, Bai SB, Wang Q (2018) High-performance thermal and electrical conductive composites from multilayer plastic packaging waste and expanded graphite. J Mater Chem C 6:11209–11218

    CAS  Google Scholar 

  129. 129

    Wei B, Zhang L, Yang S (2021) Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem Eng J 404:126437

    CAS  Google Scholar 

  130. 130

    Harris K, Bugnet M, Naguib M, Barsoum M, Goward G (2015) Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy. J Phys Chem C 119:13700–13712

    Google Scholar 

  131. 131

    Liu J, Liu Z, Zhang H et al (2020) Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv Electron Mater 6:1901094

    CAS  Google Scholar 

  132. 132

    Li Y, Tian X, Gao S et al (2020) Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv Funct Mater 30:1907451

    CAS  Google Scholar 

  133. 133

    Weng C, Wang G, Dai Z, Pei Y, Liu L, Zhang Z (2019) Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11:22804–22812

    CAS  Google Scholar 

  134. 134

    Xie F, Jia F, Zhuo L et al (2019) Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11:23382–23391

    CAS  Google Scholar 

  135. 135

    Xin W, Xi G, Cao W et al (2019) Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv 9:29636–29644

    CAS  Google Scholar 

  136. 136

    Wang L, Qiu H, Song P et al (2019) 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos Part A Appl Sci 123:293–300

    CAS  Google Scholar 

  137. 137

    Han M, Shuck CE, Rakhmanov R et al (2020) Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14:5008–5016

    CAS  Google Scholar 

  138. 138

    Jia X, Shen B, Chen Z, Zhang L, Zheng W (2019) High-performance carbonized waste corrugated boards reinforced with epoxy coating as lightweight structured electromagnetic shields. ACS Sustain Chem Eng 7:18718–18725

    CAS  Google Scholar 

  139. 139

    Ma X, Shen B, Zhang L et al (2019) Novel straw-derived carbon materials for electromagnetic interference shielding: a waste-to-wealth and sustainable initiative. ACS Sustain Chem Eng 7:9663–9670

    CAS  Google Scholar 

  140. 140

    Lee S, Jo I, Kang S et al (2017) Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11:5318–5324

    CAS  Google Scholar 

  141. 141

    Arief I, Biswas S, Bose S (2017) FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl Mater Inter 9:19202–19214

    CAS  Google Scholar 

  142. 142

    Lee TW, Lee SE, Jeong YG (2016) Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos Sci Technol 131:77–87

    CAS  Google Scholar 

  143. 143

    Wang H, Zhu D, Zhou W, Luo F (2016) Effect of multiwalled carbon nanotubes on the electromagnetic interference shielding properties of polyimide/carbonyl iron composites. Ind Eng Chem Res 54:6589–6595

    Google Scholar 

  144. 144

    Sharif M, Ping CS, Leong KY (2017) Electromagnetic interference shielding performances of MWCNT in concrete composites. Solid State Phenom 266:283–286

    Google Scholar 

  145. 145

    Geetha S, Kumar KKS, Meenakshi S, Vijayan MT, Trivedi DC (2010) Synergetic effect of conducting polymer composites reinforced E-glass fabric for the control of electromagnetic radiations. Compos Sci Technol 70:1017–1022

    CAS  Google Scholar 

  146. 146

    Joseph N, Sebastian MT (2013) Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Mater Lett 90:64–67

    CAS  Google Scholar 

  147. 147

    Jin X, Ni Q, Natsuki T (2011) Composites of multi-walled carbon nanotubes and shape memory polyurethane for electromagnetic interference shielding. J Compos Mater 45:2547–2554

    CAS  Google Scholar 

  148. 148

    Jang J, Cha JE, Lee SH et al (2020) Enhanced electrical and electromagnetic interference shielding properties of uniformly dispersed carbon nanotubes filled composite films via solvent-free process using ring-opening polymerization of cyclic butylene terephthalate. Polymer 186:122030

    CAS  Google Scholar 

  149. 149

    Zeng Z, Zhang Y, Ma X et al (2018) Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance. Carbon 140:227–236

    CAS  Google Scholar 

  150. 150

    Zhou H, Xiao Z, Wang Y et al (2020) Conductive and fire-retardant wood/polyethylene composites based on a continuous honeycomb-like nanoscale carbon black network. Constr Build Mater 233:117369

    CAS  Google Scholar 

  151. 151

    Cui C, Yan D, Pang H, Xu X, Jia L, Li Z (2016) Formation of segregated electrically conductive network structure in low-melt-viscosity polymer for highly efficient electromagnetic interference shielding. ACS Sustain Chem Eng 4:4137–4145

    CAS  Google Scholar 

  152. 152

    Jia LC, Yan DX, Xin J et al (2018) Synergistic effect of graphite and carbon nanotube on improved electromagnetic interference shielding performance in segregated composites. Ind Eng Chem Res 57:11929–11938

    CAS  Google Scholar 

  153. 153

    Yu WC, Xu JZ, Wang ZG et al (2018) Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Compos Part A Appl S 10:237–245

    Google Scholar 

  154. 154

    Yao Y, Jin S, Ma X et al (2020) Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos Sci Technol 200:108457

    Google Scholar 

  155. 155

    Kuang T, Chang L, Feng C, Yan S, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313

    CAS  Google Scholar 

  156. 156

    Xu Y, Li Y, Hua W, Zhang A, Bao J (2016) Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl Mater Inter 8:24131–24142

    CAS  Google Scholar 

  157. 157

    Wegst U, Bai H, Saiz E, Tomsia AP, Ritchie RO (2014) Bioinspired structural materials. Nat Mater 14:23–36

    Google Scholar 

  158. 158

    Gong S, Ni H, Jiang L, Cheng Q (2017) Learning from nature: constructing high performance graphene-based nanocomposites. Mater Today 20:210–219

    CAS  Google Scholar 

  159. 159

    Yang J, Liao X, Li J et al (2019) Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos Sci Technol 181:107670

    CAS  Google Scholar 

  160. 160

    Liang C, Qiu H, Han Y et al (2019) Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J Mater Chem C 7:2725–2733

    CAS  Google Scholar 

  161. 161

    Kumar P, Shahzad F, Hong SM, Chong MK (2016) A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Adv 6:101283–101287

    CAS  Google Scholar 

  162. 162

    Wang Z, Mao B, Wang Q et al (2018) Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 14:1704332

    Google Scholar 

  163. 163

    Liang C, Song P, Qiu H et al (2019) Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films. Compos Part A Appl Sci 124:105512

    CAS  Google Scholar 

  164. 164

    Pourzahedi L, Zhai P, Isaacs JA, Eckelman MJ (2017) Life cycle energy benefits of carbon nanotubes for electromagnetic interference (EMI) shielding applications. J Clean Prod 142:1971–1978

    CAS  Google Scholar 

  165. 165

    Wang G, Zhao G, Wang S, Zhang L, Park CB (2018) Injection molded microcellular PLA/graphite nanocomposite with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J Mater Chem C 6:6847–6859

    CAS  Google Scholar 

  166. 166

    Idumah CI, Hassan A (2016) Emerging trends in graphene carbon based polymer nanocomposites and applications. Rev Chem Eng 32:223–264

    CAS  Google Scholar 

  167. 167

    Kuschel H, Heckenbach J, Muller S, Appel R (2008) On the potentials of passive, multistatic, low frequency radars to counter stealth and detect low flying targets. IEEE Radar Conf 1–4:105–110

    Google Scholar 

  168. 168

    Zhong S, Wu L, Liu T, Huang J, Wei J, Ma Y (2018) Transparent transmission-selective radar-infrared bi-stealth structure. Opt Express 26:16466–16476

    CAS  Google Scholar 

  169. 169

    Jayalakshmi CG, Inamdar A, Anand A, Kandasubramanian B (2019) Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J Appl Polym Sci 136:47241

    Google Scholar 

  170. 170

    Xu WD, Shi FM, Liu J, Ma Y (2014) Preliminary research on deformable member for shape stealth of tank. Appl Mech Mater 602–605:2478–2481

    Google Scholar 

  171. 171

    Kasgoz A, Korkmaz M, Durmus A (2019) Compositional and structural design of thermoplastic polyurethane/carbon based single and multi-layer composite sheets for high-performance X-band microwave absorbing applications. Polymer 180:121672

    CAS  Google Scholar 

  172. 172

    Moghimi SM (2002) Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. BBA-Mol Cell Res 1590:131–139

    CAS  Google Scholar 

  173. 173

    Zhou Y, Chen J, Chen R, Chen WJ, Fan Z, Ma YG (2020) Ultrathin electromagnetic-acoustic amphibious stealth coats. Adv Opt Mater 8:2000200

    CAS  Google Scholar 

  174. 174

    Moore J (2003) Stealth ship sets sail for a quiet life fishing for data. Nature 423:7–7

    CAS  Google Scholar 

  175. 175

    Lavers C (2008) Stealthy materials. WMaster World 16:33–35

    Google Scholar 

  176. 176

    Bai BW, Li XP, Xu J, Liu YM (2015) Reflections of electromagnetic waves obliquely incident on a multilayer stealth structure with plasma and radar absorbing material. IEEE Trans Plasma Sci 43:2588–2597

    CAS  Google Scholar 

  177. 177

    Li Y, Wu Z, Huang PL, Liu ZH (2010) A new method for analyzing integrated stealth ability of penetration aircraft. Chin J Aeronaut 23:187–193

    Google Scholar 

  178. 178

    Lin JC (2005) Human and environmental protection from electromagnetic emissions. IEEE Microw Mag 6:30–34

    Google Scholar 

  179. 179

    Pu J, Zha X, Tang L et al (2018) Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics. ACS Appl Mater Interface 10:40880–40889

    CAS  Google Scholar 

  180. 180

    Tellakula RA, Varadan VK, Shami TC, Mathur GN (2004) Carbon fiber and nanotube based composites with polypyrrole fabric as electromagnetic absorbers. Smart Mater Struct 13:1040–1044

    CAS  Google Scholar 

  181. 181

    Zhang Y, Qiu M, Yu Y, Wen BY, Cheng L (2016) A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Appl Mater Inter 9:809–818

    Google Scholar 

  182. 182

    Xie S, Ji Zhijiang Z, Zhu LC et al (2020) Recent progress in electromagnetic wave absorption building materials. J Build Eng 27:100963

    Google Scholar 

  183. 183

    Terukov EI, Babaev AA, Tkachev AG, Zhilina DV (2018) Radio-wave absorbing properties of polymer composites on the basis of shungite and carbon nanomaterial Taunit-M. Tech Phys 63:1044–1048

    CAS  Google Scholar 

  184. 184

    Das A, Hayvaci HT, Tiwari MK, Bayer IS, Erricolo D, Megaridis CM (2011) Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding. J Colloid Interface Sci 353:311–315

    CAS  Google Scholar 

  185. 185

    Lan CT, Li CL, Hu JY, Yang SG, Qiu YP, Ma Y (2018) High-loading carbon nanotube/polymer nanocomposite fabric coatings obtained by capillarity-assisted “excess assembly” for electromagnetic interference shielding. Adv Mater Interfaces 5:1800116

    Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support from the Fundamental Research Funds for the Central Universities (3090012212009).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xijuan Lv or Qinghai Shu.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Maude Jimenez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Jin, S., Zou, H. et al. Polymer-based lightweight materials for electromagnetic interference shielding: a review. J Mater Sci 56, 6549–6580 (2021). https://doi.org/10.1007/s10853-020-05635-x

Download citation