Engineering defect concentrations of multiwalled carbon nanotubes by microwave irradiation for tunable electromagnetic absorption properties


Incorporating the dielectric polarization effect induced by atomic-scale structural defects is an effective strategy to improve the electromagnetic absorption performances of materials. Herein, the defect concentration of multiwalled carbon nanotubes (MWCNTs) could be tuned by irradiation time under the 2.45 GHz microwave, depending on the localized “heat” effect. The defect density of the mostly optimized MWCNTs treated by irradiation for 4 min reached a maximum, presenting the defect distance (LD) of 10.83 nm and the concentration (nD) of 2.76×1011 cm−2, achieving the maximum effective absorption bandwidth of 5 GHz, which is higher than original-carbon nanotubes (CNTs) (3.9 GHz). Different from the previous integration of CNTs and heterogeneous magnetic metals, the present work demonstrates a simple microwave irradiation approach for tailoring the electromagnetic absorption properties of MWCNTs by engineering the defect concentration, and this could be extended to variable carbon-related materials and diverse applications.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1

    Wen B, Cao MS, Hou ZL, Song WL, Zhang L, Lu MM, Hai HB, Fang XY, Wang WZ, Yuan J (2013) Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65:124–139

    CAS  Article  Google Scholar 

  2. 2

    Kong L, Yin X, Yuan X, Zhang Y, Liu X, Cheng L, Zhang L (2014) Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly (dimethyl siloxane) composites. Carbon 73:185–193

    CAS  Article  Google Scholar 

  3. 3

    Sun H, Che R, You X, Jiang Y, Yang Z, Deng J, Qiu LB, Peng HS (2015) Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26:8120–8125

    Article  Google Scholar 

  4. 4

    Wen F, Zhang F, Liu Z (2011) Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J Phys Chem C 115:14025–14030

    CAS  Article  Google Scholar 

  5. 5

    Lin S, Ju S, Shi G, Zhang J, He Y, Jiang D (2019) Ultrathin nitrogen-doping graphene films for flexible and stretchable EMI shielding materials. J Mater Sci 54:7165–7179.

    CAS  Article  Google Scholar 

  6. 6

    Dang B, Chen Y, Wang H, Chen B, Jin C, Sun Q (2018) Preparation of high mechanical performance nano-Fe3O4/wood fiber binderless composite boards for electromagnetic absorption via a facile and green method. Nanomaterials 8:52

    Article  Google Scholar 

  7. 7

    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Article  Google Scholar 

  8. 8

    Micheli D, Apollo C, Pastore R, Marchetti M (2010) X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos Sci Technol 70:400–409

    CAS  Article  Google Scholar 

  9. 9

    Li N, Huang Y, Du F, He XB, Lin X, Gao HJ, Ma YF, Li FF, Chen YS, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141–1145

    CAS  Article  Google Scholar 

  10. 10

    Cao MS, Yang J, Song WL, Zhang DQ, Wen BH, Jin B, Hou ZL, Yuan J (2012) Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. J ACS Appl Mater Inter 4:6949–6956

    CAS  Article  Google Scholar 

  11. 11

    Song WL, Guan XT, Fan LZ, Zhao YB, Cao WQ, Wang CY, Cao MS (2016) Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100:109–117

    CAS  Article  Google Scholar 

  12. 12

    Qing YC, Min DD, Zhou YY, Luo F, Zhou WC (2015) Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 86:98–107

    CAS  Article  Google Scholar 

  13. 13

    Qing Y, Wang X, Zhou Y, Huang Z, Luo F, Zhou W (2014) Enhanced microwave absorption of multi-walled carbon nanotubes/epoxy composites incorporated with ceramic particles. Compos Sci Technol 102:161–168

    CAS  Article  Google Scholar 

  14. 14

    Zhang KC, Gao XB, Zhang Q, Chen H, Chen XF (2018) Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties. J Magn Magn Mater 452:55–63

    CAS  Article  Google Scholar 

  15. 15

    Qing Y, Nan H, Jia H, Min D, Zhou W, Luo F (2019) Aligned Fe microfiber reinforced epoxy composites with tunable electromagnetic properties and improved microwave absorption. J Mater Sci 54:4671–4679.

    CAS  Article  Google Scholar 

  16. 16

    Vinayasree S, Soloman MA, Sunny V, Mohanan P, Kurian P, Joy PA, Anantharaman MR (2014) Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2–12 GHz applications. J Appl Phys 116:024902

    Article  Google Scholar 

  17. 17

    Yang WY, Zhang YF, Qiao GY, Lai YF, Liu SQ, Wang CS, Han JZ, Du HL, Zhang Y, Yang YC, Hou YL, Yang JB (2018) Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17−xSix and their composites. Acta Mater 145:331–336

    CAS  Article  Google Scholar 

  18. 18

    Watts PCP, Hsu WK, Barnes A, Chambers B (2010) High permittivity from defective multiwalled carbon nanotubes in the X-Band. Adv Mater 15:600–603

    Article  Google Scholar 

  19. 19

    Li Y, Chen CX, Pan XY, Ni YW, Zhang S, Huang J, Chen D, Zhang YF (2009) Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resi. Phys B 404:1343–1346

    CAS  Article  Google Scholar 

  20. 20

    Wei HJ, Yin XW, Li X, Li MH, Dang XL, Zhang LT, Cheng LF (2019) Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon 147:276–283

    CAS  Article  Google Scholar 

  21. 21

    Wu Y, Shu RW, Zhang JB, Sun RR, Chen YN, Yuan J (2019) Oxygen vacancy defects enhanced electromagnetic wave absorption properties of 3D net-like multi-walled carbon nanotubes/cerium oxide nanocomposites. J Alloys Compd 785:616–626

    CAS  Article  Google Scholar 

  22. 22

    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Article  Google Scholar 

  23. 23

    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett 10:751–758

    CAS  Article  Google Scholar 

  24. 24

    Hasin P, Alpuche-Aviles MA, Wu Y (2010) Electrocatalytic activity of graphene multilayers toward I-/I-3 : effect of preparation conditions and polyelectrolyte modification. J Phys Chem C 114:15857–15861

    CAS  Article  Google Scholar 

  25. 25

    Luo Y, Peng V, Qin FX, Adohi BJP (2014) Magnetic field and mechanical stress tunable microwave properties of composites containing Fe-based microwires. Appl Phys Lett 104:121912

    Article  Google Scholar 

  26. 26

    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    CAS  Article  Google Scholar 

  27. 27

    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  28. 28

    Cancado LG, Jorio A, Ferreira EHM, Stavale V, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196

    CAS  Article  Google Scholar 

  29. 29

    Guan GQ, Lu JS, Jiang HL (2016) Preparation, characterization, and physical properties of graphene nanosheets and films obtained from low-temperature expandable graphite. J Mater Sci 51:926–936.

    CAS  Article  Google Scholar 

  30. 30

    Lin J, Peng ZW, Liu YY, Zepeda FR, Ye RQ, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714

    CAS  Article  Google Scholar 

  31. 31

    Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106

    Article  Google Scholar 

  32. 32

    Zafar Z, Ni V, Wu V, Shi ZX, Nan HY, Bai J, Sun LT (2013) Evolution of Raman spectra in nitrogen doped graphene. Carbon 61:57–62

    CAS  Article  Google Scholar 

  33. 33

    Eigler S, Dotzer C, Hirsch A (2012) Visualization of defect densities in reduced graphene oxide. Carbon 50:3666–3673

    CAS  Article  Google Scholar 

  34. 34

    Cao AY, Xu CL, Liang J, Wu DH, Wei BQ (2001) X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem Phys Lett 344:13–17

    CAS  Article  Google Scholar 

  35. 35

    Rupak K, Kumar GA (2015) APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chem Eng J 262:882–890

    Article  Google Scholar 

  36. 36

    Lv HF, Mu SC (2014) Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 6:5063

    CAS  Article  Google Scholar 

  37. 37

    Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 50:11312–11359

    CAS  Article  Google Scholar 

  38. 38

    Rafaja D, Schimpf C, Klemm V, Schreiber G, Bakonyi I, Péter L (2009) Formation of microstructural defects in electrodeposited Co/Cu multilayers. Acta Mater 57:3211–3222

    CAS  Article  Google Scholar 

  39. 39

    Ji JY, Sui G, Yu YH, Liu YX (2015) Significant improvement of mechanical properties observed in highly aligned carbon-nanotube-reinforced nanofibers. J Phys Chem C 113:4779–4785

    Article  Google Scholar 

  40. 40

    Watts PCP, Hsu WK, Harold WK, David RMW (2003) Are bulk defective carbon nanotubes less electrically conducting. Nano Lett 3:549–553

    CAS  Article  Google Scholar 

  41. 41

    Hammond P (2013) Applied electromagnetism. Elsevier, Amsterdam

    Google Scholar 

  42. 42

    Qin FX, Peng HX, Fuller J, Brosseau C (2012) Magnetic field-dependent effective microwave properties of microwire-epoxy composites. Appl Phys Lett 101:323

    Google Scholar 

  43. 43

    Wang ZH, Wang JY, Li YX, Liu RG, Zhang YH, Zhao XN, Zhang XF (2018) Multi-interfacial Co@CoNx@C(N) nanocapsules with nitrogen substitutions in graphitic shells for improving microwave absorption properties. J Alloys Compd 736:51–56

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the National Natural Science Foundation of China (U1704253, 51471045), the LiaoNing Revitalization Talents Program (XLYC1807177)and the fundamental research funds for the Central Universities (N160208001).

Author information



Corresponding author

Correspondence to Xuefeng Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 680 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Rong, H., Li, Y. et al. Engineering defect concentrations of multiwalled carbon nanotubes by microwave irradiation for tunable electromagnetic absorption properties. J Mater Sci (2020).

Download citation