Skip to main content
Log in

Preparation and electrochemical performance of LiNi0.5Mn1.5O4 spinels with different particle sizes and surface orientations as cathode materials for lithium-ion battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

LiNi0.5Mn1.5O4 hierarchical microspheres composed of primary particles with different sizes and surface orientations are synthesized by high-temperature calcination based on different Ni–Mn oxides pre-sintered at different temperatures. The effects of pre-sintering temperature on the microstructure, morphology, and electrochemical properties of materials are investigated. The results show that pre-sintering temperature has a significant effect on the composition of Ni–Mn oxides, whereas all LiNi0.5Mn1.5O4 products have phase-pure spinel structure. SEM shows that pre-sintering temperature exerts a great influence on the primary particles’ size and surface orientations. With pre-sintering temperature increasing, primary particle size increases gradually, and particle morphology changes from octahedron with {111} surface to truncated polyhedron with extra {100} and/or {110} surfaces. Electrochemical properties are investigated in LiNi0.5Mn1.5O4/Li half-cell and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell. It is found that the particle size and surface orientation have great influence on the electrochemical performance of LiNi0.5Mn1.5O4. Among them, the LiNi0.5Mn1.5O4 sample synthesized with Ni–Mn oxide pre-sintered at 600 °C shows better rate and cycling performances. This can be ascribed to the synergistic effect of exposed {111} surface and smaller primary particle size, which improves interfacial stability and reduces Li+ ion diffusion distance. The particle size and surface orientation can be tailored to meet different applications of LiNi0.5Mn1.5O4 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  2. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  Google Scholar 

  3. Liu H, Zhu G, Zhang L, Qu Q, Shen M, Zheng H (2015) Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate coprecipitation method. J Power Sources 274:1180–1187. https://doi.org/10.1016/j.jpowsour.2014.10.154

    Article  CAS  Google Scholar 

  4. Yi T-F, Mei J, Zhu Y-R (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105. https://doi.org/10.1016/j.jpowsour.2016.03.070

    Article  CAS  Google Scholar 

  5. Pang WK, Lin H-F, Peterson VK, Lu C-Z, Liu C-E, Liao S-C, Chen J-M (2017) Enhanced rate-capability and cycling-stability of 5 V SiO2- and polyimide-coated cation ordered LiNi0.5Mn1.5O4 lithium-ion battery positive electrodes. J Phys Chem C 121:3680–3689. https://doi.org/10.1021/acs.jpcc.6b10743

    Article  CAS  Google Scholar 

  6. Nageswaran S, Keppeler M, Kim S-J, Srinivasan M (2017) Morphology controlled Si-modified LiNi0.5Mn1.5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries. J Power Sources 346:89–96. https://doi.org/10.1016/j.jpowsour.2017.02.013

    Article  CAS  Google Scholar 

  7. Chen Z, Zhao R, Du P, Hu H, Wang T, Zhu L, Chen H (2014) Polyhedral LiNi0.5Mn1.5O4 with excellent electrochemical properties for lithium-ion batteries. J Mater Chem A 2:12835–12848. https://doi.org/10.1039/c4ta02371d

    Article  CAS  Google Scholar 

  8. Yang S, Chen J, Liu Y, Yi B (2014) Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal-organic coordination-polymers as precursors. J Mater Chem A 2:9322–9330. https://doi.org/10.1039/c4ta01147c

    Article  CAS  Google Scholar 

  9. Xue Y, Wang Z-B, Zheng L-L, Yu F-D, Liu B-S, Zhang Y, Zhou Y-X (2015) Synthesis and performance of hollow LiNi0.5Mn1.5O4 with different particle sizes for lithium-ion batteries. RSC Adv 5:100730–100735. https://doi.org/10.1039/c5ra17933e

    Article  CAS  Google Scholar 

  10. Wang J, Lin W, Wu B, Zhao J (2014) Porous LiNi0.5Mn1.5O4 sphere as 5 V cathode material for lithium ion batteries. J Mater Chem A 2:16434–16442. https://doi.org/10.1039/c4ta02903h

    Article  CAS  Google Scholar 

  11. Wang J, Qin X, Guo J, Zhou M, Zong B, Wang L, Liang G (2018) A porous hierarchical micro/nano LiNi0.5Mn1.5O4 cathode material for Li-ion batteries synthesized by a urea-assisted hydrothermal method. Dalton Trans 47:7333–7343. https://doi.org/10.1039/c8dt01307a

    Article  CAS  Google Scholar 

  12. Wu Y, Zhang J, Cao C, Khalid S, Zhao Q, Wang R, Butt FK (2017) LiNi0.5Mn1.5O4 nano-submicro cubes as high-performance 5 V cathode materials for lithium-ion batteries. Electrochim Acta 230:293–298. https://doi.org/10.1016/j.electacta.2017.01.124

    Article  CAS  Google Scholar 

  13. Xue Y, Han Y, Wang Z-B, Zheng L-L, Yu F-D, Zhou Y-X (2018) Study on LixNi0.5Mn1.5O4 (x = 0.8, 0.9, 1, 1.1, and 1.2) high-voltage cathode for lithium-ion batteries. Ionics 24:3317–3323. https://doi.org/10.1007/s11581-018-2479-5

    Article  CAS  Google Scholar 

  14. Zhao JQ, Wang Y (2014) High-capacity full lithium-ion cells based on nanoarchitectured ternary manganese-nickel-cobalt carbonate and its lithiated derivative. J Mater Chem A 2:14947–14956. https://doi.org/10.1039/c4ta02574a

    Article  CAS  Google Scholar 

  15. Liu Y, Zhang M, Xia Y, Qiu B, Liu Z, Li X (2014) One-step hydrothermal method synthesis of core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. J Power Sources 256:66–71. https://doi.org/10.1016/j.jpowsour.2014.01.059

    Article  CAS  Google Scholar 

  16. Zhu X, Li X, Zhu Y, Jin S, Wang Y, Qian Y (2014) Porous LiNi0.5Mn1.5O4 microspheres with different pore conditions: preparation and application as cathode materials for lithium-ion batteries. J Power Sources 261:93–100. https://doi.org/10.1016/j.jpowsour.2014.03.047

    Article  CAS  Google Scholar 

  17. Xue Y, Wang Z, Zheng L, Yu F, Liu B, Zhang Y, Ke K (2015) Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries. Sci Rep 5:13299. https://doi.org/10.1038/srep13299

    Article  CAS  Google Scholar 

  18. Arrebola JC, Caballero A, Cruz M, Hernán L, Morales J, Castellón ER (2006) Crystallinity control of a nanostructured LiMn1.5Ni0.5O4 spinel via polymer-assisted synthesis: a method for improving its rate capability and performance in 5 V lithium batteries. Adv Funct Mater 16:1904–1912. https://doi.org/10.1002/adfm.200500892

    Article  CAS  Google Scholar 

  19. Sun Y-K, Lee K-H, Moon S-I, Oh I-H (1998) Effect of crystallinity on the electrochemical behaviour of spinel Li1.03Mn2O4 cathode materials. Solid State Ionics 112:237–243. https://doi.org/10.1016/S0167-2738(98)00235-5

    Article  Google Scholar 

  20. Liu D, Zhu W, Trottier J, Gagnon C, Barray F, Guerfi A, Mauger A, Groult H, Julien CM, Goodenough JB, Zaghib K (2014) Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv 4:154–167. https://doi.org/10.1039/c3ra45706k

    Article  CAS  Google Scholar 

  21. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175. https://doi.org/10.1021/jp993593c

    Article  CAS  Google Scholar 

  22. Liu H, Kloepsch R, Wang J, Winter M, Li J (2015) Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultralong-life lithium-ion battery: positive (100) surfaces in high-voltage spinel system. J Power Sources 300:430–437. https://doi.org/10.1016/j.jpowsour.2015.09.066

    Article  CAS  Google Scholar 

  23. Liu H, Wang J, Zhang X, Zhou D, Qi X, Qiu B, Fang J, Kloepsch R, Schumacher G, Liu Z, Li J (2016) Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces 8:4661–4675. https://doi.org/10.1021/acsami.5b11389

    Article  CAS  Google Scholar 

  24. Li Y, Tan H, Yang X-Y, Goris B, Verbeeck J, Bals S, Colson P, Cloots R, Van Tendeloo G, Su B-L (2011) Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties. Small 7:475–483. https://doi.org/10.1002/smll.201001403

    Article  CAS  Google Scholar 

  25. Jiang H, Zhao T, Yan C, Ma J, Li C (2010) Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2:2195–2198. https://doi.org/10.1039/c0nr00257g

    Article  CAS  Google Scholar 

  26. Kim J-S, Kim KS, Cho W, Shin WH, Kanno R, Choi JW (2012) A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. Nano Lett 12:6358–6365. https://doi.org/10.1021/nl303619s

    Article  CAS  Google Scholar 

  27. Deng Y-F, Zhao S-X, Xu Y-H, Gao K, Nan C-W (2015) Impact of P-doped in spinel LiNi0.5Mn1.5O4 on degree of disorder, grain morphology and electrochemical performance. Chem Mater 27:7734–7742. https://doi.org/10.1021/acs.chemmater.5b03517

    Article  CAS  Google Scholar 

  28. Lin HB, Zhang YM, Rong HB, Mai SW, Hu JN, Liao YH, Xing LD, Xu MQ, Li XP, Li WS (2014) Crystallographic facet- and size-controllable synthesis of spinel LiNi0.5Mn1.5O4 with excellent cyclic stability as cathode of high voltage lithium ion battery. J Mater Chem A 2:11987–11995. https://doi.org/10.1039/c4ta01810a

    Article  CAS  Google Scholar 

  29. Chen Z, Zhao R, Li A, Hu H, Liang G, Lan W, Cao Z, Chen H (2015) Polyhedral ordered LiNi0.5Mn1.5O4 spinel with excellent electrochemical properties in extreme conditions. J Power Sources 274:265–273. https://doi.org/10.1016/j.jpowsour.2014.10.073

    Article  CAS  Google Scholar 

  30. Liu H, Zhang X, He X, Senyshyn A, Wilken A, Zhou D, Fromm O, Niehoff P, Yan B, Li J, Muehlbauer M, Wang J, Schumacher G, Paillard E, Winter M, Li J (2018) Truncated octahedral high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: positive influences of Ni/Mn disordering and oxygen vacancies. J Electrochem Soc 165:A1886–A1896. https://doi.org/10.1149/2.1241809jes

    Article  CAS  Google Scholar 

  31. Cho JH, Park JH, Lee MH, Song HK, Lee SY (2012) A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case. Energy Environ Sci 5:7124–7131. https://doi.org/10.1039/c2ee03389e

    Article  CAS  Google Scholar 

  32. Lux SF, Lucas IT, Pollak E, Passerini S, Winter M, Kostecki R (2012) The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem Commun 14:47–50. https://doi.org/10.1016/j.elecom.2011.10.026

    Article  CAS  Google Scholar 

  33. Talyosef Y, Markovsky B, Lavi R, Salitra G, Aurbach D, Kovacheva D, Gorova M, Zhecheva E, Stoyanova R (2007) Comparing the behavior of nano- and microsized particles of LiMn1.5Ni0.5O4 spinel as cathode materials for Li-ion batteries. J Electrochem Soc 154:A682–A691. https://doi.org/10.1149/1.2736657

    Article  CAS  Google Scholar 

  34. Yin C, Zhou H, Yang Z, Li J (2018) Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces 10:13625–13634. https://doi.org/10.1021/acsami.8b02553

    Article  CAS  Google Scholar 

  35. Sun W, Li Y, Xie K, Luo S, Bai G, Tan X, Zheng C (2018) Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed 111 facets as advanced cathode material for lithium-ion batteries. Nano Energy 54:175–183. https://doi.org/10.1016/j.nanoen.2018.10.006

    Article  CAS  Google Scholar 

  36. Chen Z, Wang X, Tian X, Zhong H, Hu C, Wen J, Peng Y, Xu J, Wu C (2019) Synthesis of ordered LiNi0.5Mn1.5O4 nanoplates with exposed 100 and 110 crystal planes and its electrochemical performance for lithium ions batteries. Solid State Ionics 333:50–56. https://doi.org/10.1016/j.ssi.2019.01.022

    Article  CAS  Google Scholar 

  37. Ma Y, Chen K, Ma J, Xu G, Dong S, Chen B, Li J, Chen Z, Zhou X, Cui G (2019) A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries. Energy Environ Sci 12:273–280. https://doi.org/10.1039/c8ee02555j

    Article  CAS  Google Scholar 

  38. Duncan H, Abu-Lebdeh Y, Davidson IJ (2010) Study of the cathode-electrolyte interface of LiMn1.5Ni0.5O4 synthesized by a sol-gel method for Li-ion batteries. J Electrochem Soc 157:A528–A535. https://doi.org/10.1149/1.3321710

    Article  CAS  Google Scholar 

  39. Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 8:1695–1707. https://doi.org/10.1021/cm9000043

    Article  CAS  Google Scholar 

  40. Börner M, Niehoff P, Vortmann B, Nowak S, Winter M, Schappacher FM (2016) Comparison of different synthesis methods for LiNi0.5Mn1.5O4: influence on battery cycling performance, degradation, and aging. Energy Technol 4:1631–1640. https://doi.org/10.1002/ente.201600383

    Article  CAS  Google Scholar 

  41. Edström K, Gustafsson T, Thomas JO (2004) The cathode-electrolyte interface in the Li-ion battery. Electrochim Acta 50:397–403. https://doi.org/10.1016/j.electacta.2004.03.049

    Article  CAS  Google Scholar 

  42. Tu W, Xia P, Zheng X, Ye C, Xu M, Li W (2017) Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte. J Power Sources 34:348–356. https://doi.org/10.1016/j.jpowsour.2016.12.012

    Article  CAS  Google Scholar 

  43. Zheng J, Yan P, Mei D, Engelhard MH, Cartmell SS, Polzin BJ, Wang C, Zhang J-G, Xu W (2016) Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer. Adv Energy Mater 6:1502151. https://doi.org/10.1002/aenm.201502151

    Article  CAS  Google Scholar 

  44. Wang J, Nie P, Xu G, Jiang J, Wu Y, Fu R, Dou H, Zhang X (2018) High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries. Adv Funct Mater 28:1704808. https://doi.org/10.1002/adfm.201704808

    Article  CAS  Google Scholar 

  45. Kim J-H, Pieczonka NPW, Sun Y-K, Powell BR (2014) Improved lithium-ion battery performance of LiNi0.5Mn1.5−xTixO4 high voltage spinel in full-cells paired with graphite and Li4Ti5O12 negative electrodes. J Power Sources 262:62–71. https://doi.org/10.1016/j.jpowsour.2014.03.107

    Article  CAS  Google Scholar 

  46. Wu HM, Belharouak I, Deng H, Abouimrane A, Sun Y-K, Amine K (2009) Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life. J Electrochem Soc 156:A1047–A1050. https://doi.org/10.1149/1.3240197

    Article  CAS  Google Scholar 

  47. Xiang HF, Zhang X, Jin QY, Zhang CP, Chen CH, Ge XW (2008) Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J Power Sources 183:355–360. https://doi.org/10.1016/j.jpowsour.2008.04.091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Number 51802074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Guangchuan Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Deng, Z., Yan, S. et al. Preparation and electrochemical performance of LiNi0.5Mn1.5O4 spinels with different particle sizes and surface orientations as cathode materials for lithium-ion battery. J Mater Sci 55, 13157–13176 (2020). https://doi.org/10.1007/s10853-020-04973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04973-0

Navigation