Investigation of poly(phthalazinone ether ketone) amphoteric ion exchange membranes in vanadium redox flow batteries

Abstract

Amphoteric ion exchange membranes (Q-x/S) for vanadium redox flow battery (VRFB) are prepared from brominated poly(phthalazinone ether ketone) with the degree of substitution (DS) in the range of 60–95% and sulfonated poly(phthalazinone ether ketone) through blending and amination reaction, and x refers to the DS. Q-x/S membranes contain quaternary ammonium and sulfonic groups, making it easy to adjust the permeability of different vanadium ions and net water transport. When the DS increases from 60 to 95%, the discrepancy of the permeability for VO2+/VO2+ and V2+/V3+ enhances. The permeability of VO2+, VO2+, V3+ and V2+ for Q-x/S membranes was 98.7–99.9%, 98.6–99.9%, 99.5–99.9% and 99.2–99.9% less than those for Nafion115. Compared to Nafion115, Q-88/S membrane shows 81.3 and 84.8% decrease in static and cycling water transport volume. The energy efficiency (EE) of Q-88/S and Q-95/S membranes reaches 90% at the current density of 40 mA cm−2, higher than that of Nafion115 (86.5%). Compared with Nafion115, Q-x/S membranes exhibit stable efficiencies and higher capacity retention in long-term VRFB operation. Low vanadium permeability and net water transport volume make Q-x/S membranes promising to be used in commercial VRFB.

Graphic abstract

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1

    Rychcik M, Skyllas-Kazacos M (1988) Characteristics of a new all-vanadium redox flow battery. J Power Sources 22:59–67. https://doi.org/10.1016/0378-7753(88)80005-3

    CAS  Article  Google Scholar 

  2. 2

    Yang XG, Ye Q, Cheng P, Zhao TS (2015) Effects of the electric field on ion crossover in vanadium redox flow batteries. Appl Energy 145:306–319. https://doi.org/10.1016/j.apenergy.2015.02.038

    CAS  Article  Google Scholar 

  3. 3

    Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG (2013) Recent progress in redox flow battery research and development. Adv Funct Mater 23:970–986. https://doi.org/10.1002/adfm.201200694

    CAS  Article  Google Scholar 

  4. 4

    Yang XB, Zhao L, Goh K, Sui XL, Meng LH, Wang ZB (2020) A phosphotungstic acid coupled silica-Nafion composite membrane with significantly enhanced ion selectivity for vanadium redox flow battery. J Energy Chem 41:177–184. https://doi.org/10.1016/j.jechem.2019.05.022

    Article  Google Scholar 

  5. 5

    Kondratenko MS, Karpushkin EA, Gvozdik NA, Gallyamov MO, Stevenson KJ, Sergeyev VG (2017) Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications. J Power Sources 340:32–39. https://doi.org/10.1016/j.jpowsour.2016.11.045

    CAS  Article  Google Scholar 

  6. 6

    Teng XG, Zhao YT, Xia JY, Wu ZH, Qiu XP, Chen LQ (2009) Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. J Membr Sci 341:149–154. https://doi.org/10.1016/j.memsci.2009.05.051

    CAS  Article  Google Scholar 

  7. 7

    Zhang BG, Zhang SH, Xing DB, Han RL, Yin CX, Jian XG (2012) Quaternized poly(phthalazinone ether ketone ketone) anion-exchange membrane with low permeability of vanadium ions for vanadium redox flow battery application. J Power Sources 217:296–302. https://doi.org/10.1016/j.jpowsour.2012.06.027

    CAS  Article  Google Scholar 

  8. 8

    Chen DY, Hickner MA, Agar E, Kumbur EC (2013) Selective anion-exchange membranes for high coulombic efficiency vanadium redox flow batteries. Electrochem Commun 26:37–40. https://doi.org/10.1016/j.elecom.2012.10.007

    CAS  Article  Google Scholar 

  9. 9

    Li XF, Zhang HM, Mai ZS, Zhang HZ, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147–1160. https://doi.org/10.1039/c0ee00770f

    CAS  Article  Google Scholar 

  10. 10

    Min SC, Jeong HY, Shin HY, Hong SH, Kim TH, Oh SG, Lee JY, Hong YT (2017) Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application. J Power Sources 363:78–86. https://doi.org/10.1016/j.jpowsour.2017.07.068

    CAS  Article  Google Scholar 

  11. 11

    Pezeshki M, Tang ZJ, Fujimoto C, Sun CN, Mench MM, Zawodzinski TA (2016) Full cell study of diels alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries. J Electrochem Soc 163:A5154–A5162. https://doi.org/10.1149/2.0201601jes

    CAS  Article  Google Scholar 

  12. 12

    Chen Y, Liu ZC, Lin MJ, Lin QL, Tong BH, Chen DY (2019) Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries. Sci China Chem 62:479–490. https://doi.org/10.1007/s11426-018-9390-6

    CAS  Article  Google Scholar 

  13. 13

    Zhou LJ, Zhu JY, Lin MJ, Xu JQ, Xie ZL, Chen DY (2020) Tetra-alkylsulfonate functionalized poly(aryl ether) membranes with nanosized hydrophilic channels for efficient proton conduction. J Energy Chem 40:57–64. https://doi.org/10.1016/j.jechem.2019.02.013

    Article  Google Scholar 

  14. 14

    Qiu JY, Zhang JZ, Chen JH, Peng J, Xu L, Zhai ML, Li JQ, Wei GS (2009) Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications. J Membr Sci 334:9–15. https://doi.org/10.1016/j.memsci.2009.02.009

    CAS  Article  Google Scholar 

  15. 15

    Hu GW, Wang Y, Ma J, Qiu JY, Peng J, Li JQ, Zhai ML (2012) A novel amphoteric ion exchange membrane synthesized by radiation-induced grafting α-methylstyrene and N, N-dimethylaminoethyl methacrylate for vanadium redox flow battery application. J Membr Sci 407:184–192. https://doi.org/10.1016/j.memsci.2012.03.042

    CAS  Article  Google Scholar 

  16. 16

    Nibel O, Rojek T, Schmidt TJ, Gubler L (2017) Amphoteric ion-exchange membranes with significantly improved vanadium barrier properties for all-vanadium redox flow batteries. Chemsuschem 10:2767–2777. https://doi.org/10.1002/cssc.201700610

    CAS  Article  Google Scholar 

  17. 17

    Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem A 18:1232–1238. https://doi.org/10.1039/b718526j

    CAS  Article  Google Scholar 

  18. 18

    Sha’rania SS, Abouzari-Lotfb E, Nasef MM, Ahmad A, Ting TM, Ali RR (2019) Improving the redox flow battery performance of low-cost thin polyelectrolyte membranes by layer-by-Layer Surface assembly. J Power Sources 413:182–190. https://doi.org/10.1016/j.jpowsour.2018.12.037

    CAS  Article  Google Scholar 

  19. 19

    Wang YF, Wang SJ, Xiao M, Song SQ, Han DM, Hickner MA, Meng YZ (2014) Amphoteric ion exchange membrane synthesized by direct polymerization for vanadium redox flow battery application. Int J Hydrogen Energy 39:16123–16131. https://doi.org/10.1016/j.ijhydene.2014.04.049

    CAS  Article  Google Scholar 

  20. 20

    Liao JB, Lu MZ, Chu YQ, Wang JL (2015) Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries. J Power Sources 282:241–247. https://doi.org/10.1016/j.jpowsour.2015.02.025

    CAS  Article  Google Scholar 

  21. 21

    Xia ZJ, Ying LB, Fang JH, Du YY, Zhang WM, Guo XX, Yin J (2016) Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications. J Membr Sci 525:229–239. https://doi.org/10.1016/j.memsci.2016.10.05

    Article  Google Scholar 

  22. 22

    Yan XM, Zhang CM, Dong ZW, Jiang BW, Dai Y, Wu XM, He GH (2018) Amphiprotic side-chain functionalization constructing highly proton/vanadium-selective transport channels for high performance membranes in vanadium redox flow batteries. ACS Appl Mater Interfaces 10:32247–32255. https://doi.org/10.1021/acsami.8b11993

    CAS  Article  Google Scholar 

  23. 23

    Zhang YX, Wang HX, Yu WK, Shi HF (2018) Structure and properties of sulfonated poly(ether ether ketone) hybrid membrane with polyaniline-chains-modified graphene oxide and its application for vanadium redox flow battery. ChemistrySelect 3:9249–9258. https://doi.org/10.1002/slct.201801548

    CAS  Article  Google Scholar 

  24. 24

    Cao L, Kong L, Kong LQ, Zhang XX, Shi HF (2015) Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery. J Power Sources 299:255–264. https://doi.org/10.1016/j.jpowsour.2015.09.026

    CAS  Article  Google Scholar 

  25. 25

    Zhao XS, Fu YZ, Li W, Manthiram A (2012) Hydrocarbon blend membranes with suppressed chemical crossover for redox flow batteries. RSC Adv 2:5554–5556. https://doi.org/10.1039/c2ra20668d

    CAS  Article  Google Scholar 

  26. 26

    Zhang HQ, Yan XM, Gao L, Hu L, Ruan XH, Zheng WJ, He GH (2019) Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery. ACS Appl Mater Interfaces 11:5003–5014. https://doi.org/10.1021/acsami.8b18617

    CAS  Article  Google Scholar 

  27. 27

    Liu S, Wang LH, Ding Y, Liu BQ, Han XT, Song YL (2014) Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochim Acta 130:90–96. https://doi.org/10.1016/j.electacta.2014.02.144

    CAS  Article  Google Scholar 

  28. 28

    Chen DJ, Chen XL, Ding LF, Li XF (2018) Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application. J Membr Sci 533:25–31. https://doi.org/10.1016/j.memsci.2018.02.039

    CAS  Article  Google Scholar 

  29. 29

    Bülbül E, Atanasov V, Mehlhorn M, Bürger M, Chromik A, Häring T, Kerres J (2019) Highly phosphonated polypentafluorostyrene blended with polybenzimidazole: application in vanadium redox flow battery. J Membr Sci 570–571:194–203. https://doi.org/10.1016/j.memsci.2018.10.027

    CAS  Article  Google Scholar 

  30. 30

    Chu FQ, Chu XF, Lv T, Chen ZY, Ren YR, Zhang S, Yuan NY, Lin BC, Ding JN (2019) Amphoteric membranes based on sulfonated polyether ether ketone and imidazolium-functionalized polyphenylene oxide for vanadium redox flow battery applications. Chemelectrochem 6:5041–5050. https://doi.org/10.1002/celc.201901367

    CAS  Article  Google Scholar 

  31. 31

    Liu S, Wang LH, Li D, Liu BQ, Wang JJ, Song YL (2015) Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/quaternized poly(ether imide) for vanadium redox flow battery applications. J Mater Chem A 3:17590–17597. https://doi.org/10.1039/c5ta04351d

    CAS  Article  Google Scholar 

  32. 32

    Gan RJ, Ma YJ, Li SS, Zhang FX, He GH (2018) Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications. J Energy Chem 27:1189–1197. https://doi.org/10.1016/j.jechem.2017.09.017

    Article  Google Scholar 

  33. 33

    Yan XM, Zhang CM, Dai Y, Zheng WJ, Ruan XH, He GH (2017) A novel imidazolium-based amphoteric membrane for high-performance vanadium redox flow battery. J Membr Sci 544:98–107. https://doi.org/10.1016/j.memsci.2017.09.025

    CAS  Article  Google Scholar 

  34. 34

    Sui YQ, Du YX, Hu HY, Qian JS, Zhang X (2019) Do acid–base interactions really improve the ion conduction in a proton exchange membrane? a study on the effect of basic groups. J Mater Chem A 7:19820–19830. https://doi.org/10.1039/c9ta06508c

    CAS  Article  Google Scholar 

  35. 35

    Sukkar T, Skyllas-Kazacos M (2003) Water transfer behaviour across cation exchange membranes in the vanadium redox battery. J Membr Sci 222:235–247. https://doi.org/10.1016/S0376-7388(03)00309-0

    CAS  Article  Google Scholar 

  36. 36

    Zhou XL, Zhao TS, An L, Zeng YK, Wei L (2016) Modeling of ion transport through a porous separator in vanadium redox flow batteries. J Power Sources 327:67–76. https://doi.org/10.1016/j.jpowsour.2016.07.046

    CAS  Article  Google Scholar 

  37. 37

    Cao LY, Kronander A, Tang A, Wang DW, Skyllas-Kazacos M (2016) Membrane Permeability Rates of Vanadium Ions and Their Effects on Temperature Variation in Vanadium Redox Batteries. Energies 9:1058–1072. https://doi.org/10.3390/en9121058

    CAS  Article  Google Scholar 

  38. 38

    Vrána J, Charvát J, Mazúr P, Bělský P, Dundálek J, Pocedič J, Kosek J (2018) Commercial perfluorosulfonic acid membranes for vanadium redox flow battery: Effect of ion-exchange capacity and membrane internal structure. J Membr Sci 552:202–212. https://doi.org/10.1016/j.memsci.2018.02.011

    CAS  Article  Google Scholar 

  39. 39

    Seo SJ, Kim BC, Sung KW, Shim J, Jeon JD, Shin KH, Shin SH, Yun SH, Lee JY, Moon SH (2013) Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications. J Membr Sci 428:17–23. https://doi.org/10.1016/j.memsci.2012.11.027

    CAS  Article  Google Scholar 

  40. 40

    Gandomi YA, Aaron DS, Mench MM (2016) Coupled membrane transport parameters for ionic species in all-vanadium redox flow batteries. Electrochim Acta 218:174–190. https://doi.org/10.1016/j.electacta.2016.09.087

    CAS  Article  Google Scholar 

  41. 41

    Mohammadi T, Chieng SC, Skyllas-Kazacos M (1997) Water transport study across commercial ion exchange membranes in the vanadium redox flow battery. J Membr Sci 133:151–159. https://doi.org/10.1016/S0376-7388(97)00092-6

    CAS  Article  Google Scholar 

  42. 42

    Sun CX, Chen J, Zhang HM, Han X, Luo QT (2010) Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J Power Sources 195:890–897. https://doi.org/10.1016/j.jpowsour.2009.08.041

    CAS  Article  Google Scholar 

  43. 43

    Schwenzer B, Zhang JL, Kim S, Li LY, Liu J, Yang ZG (2011) Membrane development for vanadium redox flow batteries. Chemsuschem 4:1388–1406. https://doi.org/10.1002/cssc.201100068

    CAS  Article  Google Scholar 

  44. 44

    Mohammadi T, Skyllas-Kazacos M (1995) Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications. J Power Sources 56:91–96. https://doi.org/10.1016/0378-7753(95)80014-8

    CAS  Article  Google Scholar 

  45. 45

    Mohammadi T, Skyllas-Kazacos M (1995) Characterisation of novel composite membrane for redox flow battery applications. J Membr Sci 98:77–87. https://doi.org/10.1016/0376-7388(94)00178-2

    CAS  Article  Google Scholar 

  46. 46

    Sukkar T, Skyllas-Kazacos M (2003) Water transfer behaviour across cation exchange membranes in the vanadium redox battery. J Membr Sci 222:249–264. https://doi.org/10.1016/S0376-7388(03)00309-0

    CAS  Article  Google Scholar 

  47. 47

    Teng XG, Lei J, Gu XC, Dai JC, Zhu YM, Li FQ (2012) Nafion-sulfonated organosilica composite membrane for all vanadium redox flow battery. Ionic 18:513–521. https://doi.org/10.1007/s11581-012-0694-z

    CAS  Article  Google Scholar 

  48. 48

    Luo QT, Zhang HM, Chen J, Qian P, Zhai YF (2008) Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications. J Membr Sci 311:98–103. https://doi.org/10.1016/j.memsci.2007.11.055

    CAS  Article  Google Scholar 

  49. 49

    Zeng J, Jiang CP, Wang YH, Chen JW, Zhu SF, Zhao BJ, Wang RL (2008) Studies on polypyrrole modified nafion membrane for vanadium redox flow battery. Electrochem Commun 10:372–375. https://doi.org/10.1016/j.elecom.2007.12.025

    CAS  Article  Google Scholar 

  50. 50

    Zhang SH, Zhang BG, Zhao GF, Jian XG (2014) Anion exchange membranes from brominated poly(aryl ether ketone) containing 3,5-dimethyl phthalazinone moieties for vanadium redox flow batteries. J Mater Chem A 2:3083–3091. https://doi.org/10.1039/c3ta14503d

    CAS  Article  Google Scholar 

  51. 51

    Gao Y, Robertson CP, Guiver MD, Jian XG (2003) Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. J Polym Sci Polym Chem 41:497–507. https://doi.org/10.1002/pola.10601

    CAS  Article  Google Scholar 

  52. 52

    Chen LY, Zhang SH, Chen YN, Jian XG (2017) Low vanadium ion permeabilities of sulfonated poly(phthalazinone ether ketone)s provide high efficiency and stability for vanadium redox flow batteries. J Power Sources 355:23–30. https://doi.org/10.1016/j.jpowsour.2017.04.045

    CAS  Article  Google Scholar 

  53. 53

    Zhang SH, Yin CX, Xing DB, Yang DL, Jian XG (2010) Preparation of chloromethylated/quaternized poly(phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications. J Membr Sci 363:243–249. https://doi.org/10.1016/j.memsci.2010.07.046

    CAS  Article  Google Scholar 

  54. 54

    Zhang SH, Zhang BG, Xing DB, Jian XG (2013) Poly(phthalazinone ether ketone ketone) anion exchange membranes with pyridinium as ion exchange groups for vanadium redox flow battery applications. J Mater Chem A 1:12246–12254. https://doi.org/10.1039/c3ta11541k

    CAS  Article  Google Scholar 

  55. 55

    Sukkar T, Skyllas-Kazacos M (2004) Membrane stability studies for vanadium redox cell applications. J Appl Electrochem 34:137–145. https://doi.org/10.1023/B:JACH.0000009931.83368.dc

    CAS  Article  Google Scholar 

  56. 56

    Mohammadi T, Skyllas-Kazacos M (1997) Evaluation of the chemical stability of some membranes in vanadium solution. J Appl Electrochem 27:153–160. https://doi.org/10.1023/a:1018495722379

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Number 21276037), the project of Dalian municipal science and technology plan (Grant Number 2014J11JH127), LiaoNing Revitalization Talents Program (Grant Number XLYC1802073) and the Fundamental Research Funds for the Central Universities (Grant Number DUT19ZD404).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shouhai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 930 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, S., Liu, Q. et al. Investigation of poly(phthalazinone ether ketone) amphoteric ion exchange membranes in vanadium redox flow batteries. J Mater Sci (2020). https://doi.org/10.1007/s10853-020-04968-x

Download citation