Electrospun Mg/poly(lactic-co-glycolic acid) composite scaffold for urethral reconstruction


Hypospadias is a common congenital malformation of the male urogenital system. As a recently arisen reconstruction method for hypospadias, polymer tissue engineering urethral scaffold often results in necrosis and other complications due to the lack of bioactivity. To improve the bioactivity of polymer, in this work, we prepared biodegradable Mg/poly(lactic-co-glycolic acid) (PLGA) composite nanofiber scaffolds by electrospun with 3, 6, and 9 wt.% of micron-scale Mg particles. The mechanical properties of the PLGA scaffold gradually decrease with the addition of Mg particles but still at an acceptable level. On the other hand, these composite scaffolds show very good biocompatibility and promotional bioactivity, namely non-cytotoxicity, gradual proliferation enhancement, and good adhesion state of human adipose stem cells (HADSCs) on the scaffold surface. Besides, through quantitative real-time polymerase chain reaction (qRT-PCR) test, different genes expression levels of human umbilical vein endothelial cells (HUVECs) were also gradually up-regulated with the increase in Mg content. The present results indicate that Mg containing PLGA scaffolds might not only have the potential to promote tissue regeneration related to urethral repair, but also stimulate endothelial cells to achieve vascularization and anti-inflammatory functions. Consequently, considering both the mechanical properties and bioactivity for clinical demand, the Mg/PLGA composite scaffolds with suitable Mg contents are promising for the regeneration of defective urethral tissues.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9



Poly(lactic-co-glycolic acid)


Human adipose stem cells


Human umbilical vein endothelial cells


Extracellular matrix


Surface to volume ratio


  1. 1

    Baskin LS, Ebbers MB (2006) Hypospadias: anatomy, etiology, and technique. J Pediatr Surg 41:463–472. https://doi.org/10.1016/j.jpedsurg.2005.11.059

    Article  Google Scholar 

  2. 2

    Huang L, Guo Y, Ge Z, Lu R, Deng Y, Ma G, Chen F (2017) A new modification of the Duckett technique for one-stage repairing urethral plate transected hypospadias: another option for severe hypospadias? Int Urol Nephrol 49:2091–2097. https://doi.org/10.1007/s11255-017-1690-z

    Article  Google Scholar 

  3. 3

    Castagnetti M, El-Ghoneimi A (2010) Surgical management of primary severe hypospadias in children: systematic 20-year review. J Urol. 184:1469–1475. https://doi.org/10.1016/j.juro.2010.06.044

    Article  Google Scholar 

  4. 4

    Wang G, Yu D, Kelkar AD, Zhang L (2017) Electrospun nanofiber: emerging reinforcing filler in polymer matrix composite materials. Prog Polym Sci 75:73–107. https://doi.org/10.1016/j.progpolymsci.2017.08.002

    CAS  Article  Google Scholar 

  5. 5

    Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241. https://doi.org/10.1016/j.mattod.2013.06.005

    CAS  Article  Google Scholar 

  6. 6

    Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715. https://doi.org/10.1016/j.biomaterials.2005.11.037

    CAS  Article  Google Scholar 

  7. 7

    De Filippo RE, Kornitzer BS, Yoo JJ, Atala A (2015) Penile urethra replacement with autologous cell-seeded tubularized collagen matrices. J Tissue Eng Regen M. 9:257–264. https://doi.org/10.1002/term.1647

    CAS  Article  Google Scholar 

  8. 8

    Ji W, Yang F, Seyednejad H, Chen Z, Hennink WE, Anderson JM, van den Beucken JJJP, Jansen JA (2012) Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials 33:6604–6614. https://doi.org/10.1016/j.biomaterials.2012.06.018

    CAS  Article  Google Scholar 

  9. 9

    Zha Y, Lin T, Li Y, Zhang X, Wang Z, Li Z, Ye Y, Wang B, Zhang S, Wang J (2020) Exosome-mimetics as an engineered gene-activated matrix induces in situ vascularized osteogenesis. Biomaterials 247:119985. https://doi.org/10.1016/j.biomaterials.2020.119985

    CAS  Article  Google Scholar 

  10. 10

    Hiesinger W, Brukman MJ, McCormick RC, Fitzpatrick JR, Frederick JR, Yang EC, Muenzer JR, Marotta NA, Berry MF, Atluri P, Woo YJ (2012) Myocardial tissue elastic properties determined by atomic force microscopy after stromal cell-derived factor 1α angiogenic therapy for acute myocardial infarction in a murine model. J Thoracic Cardiovascul Surg. 143:962–966. https://doi.org/10.1016/j.jtcvs.2011.12.028

    Article  Google Scholar 

  11. 11

    Lin S, Yang G, Jiang F, Zhou M, Yin S, Tang Y, Tang T, Zhang Z, Zhang W, Jiang X (2019) A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. ADV SCI. 6:1900209. https://doi.org/10.1002/advs.201900209

    CAS  Article  Google Scholar 

  12. 12

    Maier JAM, Bernardini D, Rayssiguier Y, Mazur A (2004) High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Molecul Basis Dis. 1689:6–12. https://doi.org/10.1016/s0925-4439(04)00025-0

    CAS  Article  Google Scholar 

  13. 13

    Cai H, Meng J, Li X, Xue F, Chu C, Guo C, Bai J (2019) In vitro degradation behavior of Mg wire/poly(lactic acid) composite rods prepared by hot pressing and hot drawing. Acta Biomater 98:125–141. https://doi.org/10.1016/j.actbio.2019.05.059

    CAS  Article  Google Scholar 

  14. 14

    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039

    CAS  Article  Google Scholar 

  15. 15

    Adhikari U, An X, Rijal N, Hopkins T, Khanal S, Chavez T, Tatu R, Sankar J, Little KJ, Hom DB, Bhattarai N, Pixley SK (2019) Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical applications. Acta Biomater 98:215–234. https://doi.org/10.1016/j.actbio.2019.04.061

    CAS  Article  Google Scholar 

  16. 16

    Sinha Ray S (2012) Polylactide-based bionanocomposites: a promising class of hybrid materials. Account Chem Res. 45:1710–1720. https://doi.org/10.1021/ie302359x

    CAS  Article  Google Scholar 

  17. 17

    Chen K, Wu H, Chang C (2012) Tissue-engineered constructs for urethral regeneration. Urol Sci. 23:42–44. https://doi.org/10.1016/j.urols.2012.04.003

    CAS  Article  Google Scholar 

  18. 18

    Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330. https://doi.org/10.1039/c1ee02201f

    CAS  Article  Google Scholar 

  19. 19

    Tsai W, Chen C, Chen J, Chang K (2006) The effects of types of degradable polymers on porcine chondrocyte adhesion, proliferation and gene expression. J Mater Sci Mater Med 17:337–343. https://doi.org/10.1007/s10856-006-8234-x

    CAS  Article  Google Scholar 

  20. 20

    Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R (2017) Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in vitro and in vivo evaluation. Biomed Mater 12:55011. https://doi.org/10.1088/1748-605x/aa792b

    CAS  Article  Google Scholar 

  21. 21

    Lin M, Firoozi N, Tsai C, Wallace MB, Kang Y (2019) 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater 83:119–129. https://doi.org/10.1016/j.actbio.2018.10.035

    CAS  Article  Google Scholar 

  22. 22

    Dai J, Yang S, Jin J, Li G (2016) Electrospinning of PLA/pearl powder nanofibrous scaffold for bone tissue engineering. RSC Adv. 6:106798–106805. https://doi.org/10.1039/c6ra21796f

    CAS  Article  Google Scholar 

  23. 23

    Wang J, Witte F, Xi T, Zheng Y, Yang K, Yang Y, Zhao D, Meng J, Li Y, Li W, Chan K, Qin L (2015) Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater 21:237–249. https://doi.org/10.1016/j.actbio.2015.04.011

    CAS  Article  Google Scholar 

  24. 24

    Pegg DE (1999) Principles of tissue engineering. Cryobiology 39:378–379. https://doi.org/10.1006/cryo.1999.2214

    Article  Google Scholar 

  25. 25

    Zhao N, Zhu D (2015) Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics. 7:118–128. https://doi.org/10.1039/c4mt00244j

    CAS  Article  Google Scholar 

  26. 26

    Salajegheh A (2016) Vascular endothelial growth factor (VEGF). https://doi.org/10.1007/978-3-319-28140-7_58

  27. 27

    Zhao C, Wu H, Ni J, Zhang S, Zhang X (2017) Development of PLA/Mg composite for orthopedic implant: tunable degradation and enhanced mineralization. Compos Sci Technol. 147:8–15. https://doi.org/10.1016/j.compscitech.2017.04.037

    CAS  Article  Google Scholar 

  28. 28

    Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng A. 10:1160–1168. https://doi.org/10.1089/ten.2004.10.1160

    CAS  Article  Google Scholar 

  29. 29

    Aghajanpoor M, Hashemi-Najafabadi S, Baghaban-Eslaminejad M, Bagheri F, Mohammad MS, Azam SF (2017) The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication. J Biomed Mater Res A. 105:1887–1899. https://doi.org/10.1089/ten.2004.10.1160

    CAS  Article  Google Scholar 

  30. 30

    Augustine R, Saha A, Jayachandran VP, Thomas S, Kalarikkal N (2015) Dose-Dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. Int J Polym Mater Po. 64:526–533. https://doi.org/10.1080/00914037.2014.977900

    CAS  Article  Google Scholar 

  31. 31

    Dhal J, Fielding G, Bose S, Bandyopadhyay A (2012) Understanding bioactivity and polarizability of hydroxyapatite doped with tungsten. J Biomed Mater Res B Appl Biomater 100B:1836–1845. https://doi.org/10.1002/jbm.b.32751

    CAS  Article  Google Scholar 

  32. 32

    Khamsarn T, Supthanyakul R, Matsumoto M, Chirachanchai S (2017) PLA with high elongation induced by multi-branched poly(ethylene imine) (mPEI) containing poly(l-lactic acid) (PLLA) terminals. Polymer 112:87–91. https://doi.org/10.1016/j.polymer.2016.08.038

    CAS  Article  Google Scholar 

  33. 33

    Sinha-Ray S, Khansari S, Yarin AL, Pourdeyhimi B (2012) Effect of chemical and physical cross-linking on tensile characteristics of solution-blown soy protein nanofiber mats. Ind Eng Chem Res 51:15109–15121. https://doi.org/10.1021/ie302359x

    CAS  Article  Google Scholar 

  34. 34

    Augustine R, Nethi SK, Kalarikkal N, Thomas S, Patra CR (2017) Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. J Mater Chem B. https://doi.org/10.1039/c7tb00518k

    Article  Google Scholar 

  35. 35

    Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10:2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002

    CAS  Article  Google Scholar 

  36. 36

    Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P (2007) MMP-2, MTI-MMP, and TMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109:4055–4063. https://doi.org/10.1182/blood-2006-10-051060

    CAS  Article  Google Scholar 

  37. 37

    Endo A, Nagashima K, Kurose H, Mochizuki S, Matsuda M, Mochizuki N (2002) Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and crkii. J Biol Chem 277:23747–23754. https://doi.org/10.1074/jbc.m111794200

    CAS  Article  Google Scholar 

  38. 38

    O’Brien B, Zafar H, Ibrahim A, Zafar J, Sharif F (2016) Coronary stent materials and coatings: a technology and performance update. Ann Biomed Eng 44:523–535. https://doi.org/10.1007/s10439-015-1380-x

    Article  Google Scholar 

  39. 39

    Dimmeler S, Dernbach E, Zeiher AM (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477:258–262. https://doi.org/10.1016/s0014-5793(00)01657-4

    CAS  Article  Google Scholar 

  40. 40

    Rochelson B, Dowling O, Schwartz N, Metz CN (2007) Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HuVECs) through the NFκB pathway. J Reprod Immunol 73:101–107. https://doi.org/10.1016/j.jri.2006.06.004

    CAS  Article  Google Scholar 

  41. 41

    Roh H, Lee C, Hwang Y, Kook M, Yang S, Lee D, Kim B (2017) Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Mater Sci Eng, C 74:525–535. https://doi.org/10.1016/j.msec.2016.12.054

    CAS  Article  Google Scholar 

  42. 42

    Barui AK, Veeriah V, Mukherjee S, Manna J, Patel AK, Patra S, Pal K, Murali S, Rana RK, Chatterjee S, Patra CR (2012) Zinc oxide nanoflowers make new blood vessels. Nanoscale. 4:7861–7869. https://doi.org/10.1039/c2nr32369a

    CAS  Article  Google Scholar 

  43. 43

    Liu W, Su P, Chen S, Wang N, Webster TJ (2015) Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO2 nanoparticle-decorated TiO2 nanotubes. Nanomedicine-UK 10:713–723. https://doi.org/10.2217/nnm.14.183

    CAS  Article  Google Scholar 

  44. 44

    Culpepper Bonnie K, Morris David S, Prevelige Peter E, Bellis Susan L (2013) Engineering nanocages with polyglutamate domains for coupling to hydroxyapatite biomaterials and allograft bone. Biomaterials 34(10):2455–2462

    CAS  Article  Google Scholar 

  45. 45

    Robinson DA, Griffith RW, Shechtman D, Evans RB, Conzemius MG (2010) In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater 6:1869–1877. https://doi.org/10.1016/j.actbio.2009.10.007

    CAS  Article  Google Scholar 

  46. 46

    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694. https://doi.org/10.1038/nm1577

    CAS  Article  Google Scholar 

  47. 47

    Hou C, Peng Y, Qin C, Fan F, Liu J, Long J (2018) Hydrogen-rich water improves cognitive impairment gender-dependently in APP/PS1 mice without affecting Aβ clearance. Free Rad Res SFRR Asia 52:1311–1322. https://doi.org/10.1080/10715762.2018.1460749

    CAS  Article  Google Scholar 

  48. 48

    Noviana D, Paramitha D, Ulum MF, Hermawan H (2016) The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. J Orthop Transl. 5:9–15. https://doi.org/10.1016/j.jot.2015.08.003

    Article  Google Scholar 

Download references


Jing Bai acknowledges the support from the National Natural Science Foundation of China (51971062) and the Science and Technology Project of Jiangsu Province (BE2019679). Liqu Huang, Jing Bai, Yunfei Guo, and Li Tao acknowledge the support from Fundamental Research Funds for the Central Universities (2242018K3DN02). The authors thank Leiying Miao (Nanjing Stomatological Hospital, Medical School of Nanjing University) for the help in sample preparation.

Author information



Corresponding authors

Correspondence to Liqu Huang or Li Tao or Jing Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 805 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Wang, X., Zhang, Y. et al. Electrospun Mg/poly(lactic-co-glycolic acid) composite scaffold for urethral reconstruction. J Mater Sci 55, 13216–13231 (2020). https://doi.org/10.1007/s10853-020-04951-6

Download citation