Untethered, ultra-light soft actuator based on positively charged 3D fluffy silica micro-nanofibers by electrospinning


There is a growing interest in the design and fabrication of small-scale soft actuators and robotics, especially the realization of functionalities mimicking biological systems with biomimetic motions in response to external stimuli. However, the mobility and self-weight are still the critical challenges for further improvement and broader application of soft actuators. It is attractive to develop untethered and ultra-light small-scale robotics by integrating the actuators and drivers while achieving the ability to respond to external stimuli. Inspired by the spiders that rely on electrostatic forces in the environment to stay airborne by their ballooning silk, a positively charged fiber-paper structure-based soft actuator is proposed. Utilizing electrospinning of tetraethyl orthosilicate (TEOS) solution, this ultra-light soft actuator can realize the movement of bending and high-frequency vibration with the stimuli of electrostatic force in the electric field. Programmable motions, i.e., continuous bending with a series of angles, variable frequency vibration, can be realized by regulating the external electric field. The 3D fluffy structure of the silica micro-nanofibers and the paper-based structure endow the soft actuator with ultra-lightweight and excellent flexibility. The untethered, ultra-light soft actuator suggests a feasible approach to develop ultra-light, soft and autonomous robotics and holds promise in reconnaissance and environmental detection.

Graphic abstract

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1

    Rich SI, Wood RJ, Majidi C (2018) Nat Electron 1:102. https://doi.org/10.1038/s41928-018-0024-1

    Article  Google Scholar 

  2. 2

    Hu W, Lum GZ, Mastrangeli M, Sitti M (2018) Nature 554:81. https://doi.org/10.1038/nature25443

    CAS  Article  Google Scholar 

  3. 3

    Sitti M (2018) Nat Rev Mater 3:74. https://doi.org/10.1038/s41578-018-0001-3

    Article  Google Scholar 

  4. 4

    Hines L, Petersen K, Lum GZ, Sitti M (2017) Adv Mater 29:1603483. https://doi.org/10.1002/adma.201603483

    CAS  Article  Google Scholar 

  5. 5

    Lin H-T, Leisk GG, Trimmer B (2011) Bioinspir Biomim 6:026007. https://doi.org/10.1088/1748-3182/6/2/026007

    Article  Google Scholar 

  6. 6

    Zhao Y, Xuan C, Qian X et al (2019) Sci Robot 4:eaax7112. https://doi.org/10.1126/scirobotics.aax7112

    Article  Google Scholar 

  7. 7

    Han J, Jiang W, Niu D et al (2019) Adv Intell Syst. https://doi.org/10.1002/aisy.201900109

    Article  Google Scholar 

  8. 8

    Jiang W, Wang L, Ye G et al (2019) J Mater Sci Mater Electron 30:3767. https://doi.org/10.1007/s10854-018-00659-1

    CAS  Article  Google Scholar 

  9. 9

    Jiang W, Niu D, Wei L et al (2018) Carbon 139:1048. https://doi.org/10.1016/j.carbon.2018.07.074

    CAS  Article  Google Scholar 

  10. 10

    Zhao T, Jiang W, Niu D et al (2017) Appl Energy 195:754. https://doi.org/10.1016/j.apenergy.2017.03.097

    CAS  Article  Google Scholar 

  11. 11

    Taccola S, Greco F, Sinibaldi E, Mondini A, Mazzolai B, Mattoli V (2015) Adv Mater 27:1668. https://doi.org/10.1002/adma.201404772

    CAS  Article  Google Scholar 

  12. 12

    Shin B, Ha J, Lee M et al (2018) Sci Robot 3:eaar2629. https://doi.org/10.1126/scirobotics.aar26290

    Article  Google Scholar 

  13. 13

    Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Nat Mater 15:413. https://doi.org/10.1038/nmat4544

    CAS  Article  Google Scholar 

  14. 14

    Qian X, Zhao Y, Alsaid Y et al (2019) Nat Nanotechnol 14:1048. https://doi.org/10.1038/s41565-019-0562-3

    CAS  Article  Google Scholar 

  15. 15

    Kularatne RS, Kim H, Boothby JM, Ware TH (2017) J Polym Sci Part B Polym Phys 55:395. https://doi.org/10.1002/polb.24287

    CAS  Article  Google Scholar 

  16. 16

    Li B, Cai Y, Jiang L, Liu L, Zhao Z, Chen G (2019) Smart Mater Struct 29:015031. https://doi.org/10.1088/1361-665x/ab5ad8

    Article  Google Scholar 

  17. 17

    Chen Y, Zhao H, Mao J et al (2019) Nature 575:324. https://doi.org/10.1038/s41586-019-1737-7

    CAS  Article  Google Scholar 

  18. 18

    Wang Y, Chen H, Wang Y, Zhu Z, Li D (2014) Electrochim Acta 129:450. https://doi.org/10.1016/j.electacta.2014.02.114

    CAS  Article  Google Scholar 

  19. 19

    Shahinpoor M, Kim KJ (2000) Smart Mater Struct 9:543. https://doi.org/10.1088/0964-1726/9/4/318

    CAS  Article  Google Scholar 

  20. 20

    Son D, Gilbert H, Sitti M (2019) Soft Robot. https://doi.org/10.1089/soro.2018.0171

    Article  Google Scholar 

  21. 21

    Ren Z, Hu W, Dong X, Sitti M (2019) Nat Commun 10:1. https://doi.org/10.1038/s41467-019-10549-7

    CAS  Article  Google Scholar 

  22. 22

    Zhang J, Diller E (2016) Smart Mater Struct 25:11LT03. https://doi.org/10.1088/0964-1726/25/11/11lt03

    Article  Google Scholar 

  23. 23

    Jiang W, Niu D, Liu H et al (2014) Adv Func Mater 24:7598. https://doi.org/10.1002/adfm.201402070

    CAS  Article  Google Scholar 

  24. 24

    Niu D, Jiang W, Liu H et al (2016) Sci Rep 6:27366. https://doi.org/10.1038/srep27366

    CAS  Article  Google Scholar 

  25. 25

    Niu D, Jiang W, Ye G et al (2018) Mater Res Bull 102:92. https://doi.org/10.1016/j.materresbull.2018.02.005

    CAS  Article  Google Scholar 

  26. 26

    Ikuta K, Tsukamoto M, Hirose S (1988) Proceedings. IEEE Int Conf Robot Autom. https://doi.org/10.1109/robot.1988.12085

    Article  Google Scholar 

  27. 27

    Huang X, Kumar K, Jawed MK et al (2019) Adv Mater Technol 4:1800540. https://doi.org/10.1002/admt.201800540

    CAS  Article  Google Scholar 

  28. 28

    Sitti M (2007) IEEE Robot Autom Mag 14:53. https://doi.org/10.1109/mra.2007.339606

    Article  Google Scholar 

  29. 29

    Cho K-J, Koh J-S, Kim S, Chu W-S, Hong Y, Ahn S-H (2009) Int J Prec Eng Manuf 10:171. https://doi.org/10.1007/s12541-009-0064-6

    Article  Google Scholar 

  30. 30

    Khamis A, Hussein A, Elmogy A (2015) Cooperative Robots and Sensor Networks. https://doi.org/10.1007/978-3-319-18299-5_2

    Article  Google Scholar 

  31. 31

    Morley EL, Robert D (2018) Curr Biol 28:2324. https://doi.org/10.1016/j.cub.2018.05.057

    CAS  Article  Google Scholar 

  32. 32

    Lin T, Wang H, Wang H, Wang X (2004) Nanotechnology 15:1375. https://doi.org/10.1088/0957-4484/15/9/044

    CAS  Article  Google Scholar 

  33. 33

    Fong H, Chun I, Reneker DH (1999) Polymer 40:4585. https://doi.org/10.1016/s0032-3861(99)00068-3

    CAS  Article  Google Scholar 

  34. 34

    Le Roy C, Cornette R, Llaurens V, Debat V (2019) J Exper Biol 222:jeb204057. https://doi.org/10.1242/jeb.204057

    Article  Google Scholar 

  35. 35

    Davis RS (1992) Metrologia 29:67. https://doi.org/10.1088/0026-1394/29/1/008

    Article  Google Scholar 

  36. 36

    Gonzalez-Oliver C, James PF, Rawson H (1982) J Non-Cryst Solids 48:129. https://doi.org/10.1016/0022-3093(82)90251-4

    CAS  Article  Google Scholar 

  37. 37

    Choi S-S, Lee SG, Im SS, Kim SH, Joo YL (2003) J Mater Sci Lett 22:891. https://doi.org/10.1023/a:1024475022937

    CAS  Article  Google Scholar 

  38. 38

    Collins G, Federici J, Imura Y, Catalani LH (2012) J Appl Phys 111:044701. https://doi.org/10.1063/1.3682464

    CAS  Article  Google Scholar 

  39. 39

    Cho BM, Nam YS, Cheon JY, Park WH (2015) J Appl Poly Sci. https://doi.org/10.1002/app.41340

    Article  Google Scholar 

  40. 40

    Wunner FM, Wille ML, Noonan TG et al (2018) Adv Mater 30:1706570. https://doi.org/10.1002/adma.201706570

    CAS  Article  Google Scholar 

  41. 41

    Zhong Q, Yao Y, Guo X, Zhou T, Xiang R (2017) Eur Phys J Appl Phys 78:20402. https://doi.org/10.1051/epjap/2017160320

    CAS  Article  Google Scholar 

  42. 42

    Mi H-Y, Jing X, Huang H-X, Turng L-S (2017) Mater Lett 204:45. https://doi.org/10.1016/j.matlet.2017.05.128

    CAS  Article  Google Scholar 

  43. 43

    Liu L, Lv F, Li P et al (2016) Compos A Appl Sci Manuf 84:292. https://doi.org/10.1016/j.compositesa.2016.02.002

    CAS  Article  Google Scholar 

  44. 44

    Shahhosseininia M, Bazgir S, Joupari MD (2018) Mater Sci Eng C 91:502. https://doi.org/10.1016/j.msec.2018.05.068

    CAS  Article  Google Scholar 

  45. 45

    Kim Y, Yuk H, Zhao R, Chester SA, Zhao X (2018) Nature 558:274. https://doi.org/10.1038/s41586-018-0185-0

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (No.51625504, 51675421, 91748209, 51827805, 51705407). This work is partially sponsored by National Key R&D Program of China (2016YFF0100700, 2017YFF0204803), Major science and technology special project (2016ZX04002003, 2016ZX04002004), the Specialized Research Fund for the Doctoral Program of Higher Education (2016M600785, 2016BSHEDZZ126, 2018T111048), and the Natural Science Foundation of Shaanxi Province (2018ZDCXL-GY-08–01, 2017ZDXM-GY-112, 2017JZ014).

Author information



Corresponding author

Correspondence to Weitao Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file2 (MP4 11752 kb)

Supplementary file3 (MP4 16431 kb)

Supplementary file4 (MP4 11927 kb)

Supplementary file1 (DOCX 166 kb)

Supplementary file2 (MP4 11752 kb)

Supplementary file3 (MP4 16431 kb)

Supplementary file4 (MP4 11927 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, J., Jiang, W., Zhang, H. et al. Untethered, ultra-light soft actuator based on positively charged 3D fluffy silica micro-nanofibers by electrospinning. J Mater Sci 55, 12789–12800 (2020). https://doi.org/10.1007/s10853-020-04944-5

Download citation