Skip to main content
Log in

A facile one-step synthesis of highly efficient melamine salt reactive flame retardant for epoxy resin

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to improve the flame retardancy and smoke suppression of epoxy resin (EP) simultaneously, we synthesized a melamine phenylhypophosphonate named as MABP via a simple one-step method and used it to modify EP materials. As expected, the addition of MABP not only largely improved the flame retardancy but also restrained the smoke release of EP. For details, when the content of MABP was 10 wt%, the EP composite possessed a limiting oxygen index value of 33% and achieved to a UL-94 V-0 rating as well as its PHRR, THR and TSP values decreased by 55.1%, 27.1% and 60% compared with that of neat EP, respectively. In addition, the flame-retardant mechanism was investigated by multiple instruments, and the corresponding results exhibited that the MABP could improve the compactness of char layer in condense phase and exerted fire-inhibition effect in gaseous phase.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Huo SQ, Liu ZT, Wang J (2020) Thermal properties and flame retardancy of an intumescent flame-retarded epoxy system containing phosphaphenanthrene, triazine-trione and piperidine. J Therm Anal Calorim 139:1099–1110. https://doi.org/10.1007/s10973-019-08467-3

    Article  CAS  Google Scholar 

  2. Zhu ZM, Shang K, Wang LX, Wang JS (2019) Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy. Polym Degrad Stab 167:179–188. https://doi.org/10.1016/j.polymdegradstab.2019.07.005

    Article  CAS  Google Scholar 

  3. Ai YF, Xia L, Pang FQ, Xu YL, Zhao HB, Jian RK (2020) Mechanically strong and flame-retardant epoxy resins with anti-corrosion performance. Compos B 193:108019. https://doi.org/10.1016/j.compositesb.2020.108019

    Article  CAS  Google Scholar 

  4. Yu B, Xing WY, Guo WW, Qiu SL, Wang X, Lo SM, Hu Y (2016) Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. J Mater Chem A 4:7330–7340. https://doi.org/10.1039/C6TA01565D

    Article  CAS  Google Scholar 

  5. Grause G, Karakita D, Ishibashi J, Kameda T, Bhaskar T, Yoshioka T (2011) TG-MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene. Chemosphere 85:368–373. https://doi.org/10.1016/j.chemosphere.2011.06.104

    Article  CAS  Google Scholar 

  6. Wang JQ, Chow WK (2005) A brief review on fire retardants for polymeric foams. J Appl Polym Sci 97:366–376. https://doi.org/10.1002/app.21758

    Article  CAS  Google Scholar 

  7. Wang X, Hu Y, Song L, Xing WY, Lu HD (2011) Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J Anal Appl Pyrol 92:164–170. https://doi.org/10.1016/j.jaap.2011.05.006

    Article  CAS  Google Scholar 

  8. Luo HQ, Rao WH, Zhao P, Wang L, Liu YL, Yu CB (2020) An efficient organic/inorganic phosphorus—nitrogen—silicon flame retardant towards low-flammability epoxy resin. Polym Degrad Stab 178:109195. https://doi.org/10.1016/j.polymdegradstab.2020.109195

    Article  CAS  Google Scholar 

  9. Yang S, Zhang QX, Hu YF (2016) Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin. Polym Degrad Stab 133:358–366. https://doi.org/10.1016/j.polymdegradstab.2016.09.023

    Article  CAS  Google Scholar 

  10. Schartel B (2010) Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials 3:4710–4745. https://doi.org/10.3390/ma3104710

    Article  CAS  Google Scholar 

  11. Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364. https://doi.org/10.1177/0734904106068426

    Article  CAS  Google Scholar 

  12. Shao ZB, Zhang MX, Li Y, Han Y, Ren L, Deng C (2018) A novel multi-functional polymeric curing agent: synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency. Chem Eng J 345:471–482. https://doi.org/10.1016/j.cej.2018.03.142

    Article  CAS  Google Scholar 

  13. Tan Y, Shao ZB, Yu LX, Long JW, Qi M, Chen L, Wang YZ (2016) Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: Flame retardance, curing behavior and mechanical property. Polym Chem 7:3003–3012. https://doi.org/10.1039/C6PY00434B

    Article  CAS  Google Scholar 

  14. Hu XP, Li YL, Wang YZ (2004) Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromol Mater Eng 289:208–212. https://doi.org/10.1002/mame.200300189

    Article  CAS  Google Scholar 

  15. Zhao X, Zhang L, Alonso JP, Delgado S, Martínez-Miranda MR, Wang DY (2018) Influence of phenylphosphonic amide on rheological, mechanical and flammable properties of carbon fiber/RTM6 composites. Compos Part B Eng 149:74–81. https://doi.org/10.1016/j.compositesb.2018.05.018

    Article  CAS  Google Scholar 

  16. Zhu ZM, Wang LX, Dong LP (2019) Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin. Polym Degrad Stab 162:129–137. https://doi.org/10.1016/j.polymdegradstab.2019.02.021

    Article  CAS  Google Scholar 

  17. Shao XM, Du YQ, Zheng XF, Wang JC, Wang YC, Zhao S, Xin ZX, Li L (2020) Reduced fire hazards of expandable polystyrene building materials via intumescent flame-retardant coatings. J Mater Sci 55:7555–7572. https://doi.org/10.1007/s10853-020-04548-z

    Article  CAS  Google Scholar 

  18. Dong LP, Huang SC, Li YM, Deng C, Wang YZ (2016) A novel linear-chain polyamide charring agent for the fire safety of noncharring polyolefin. Ind Eng Chem Res 55:7132–7147. https://doi.org/10.1021/acs.iecr.6b01308

    Article  CAS  Google Scholar 

  19. Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR (2018) Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew Chem Int Ed 57:10450–10467. https://doi.org/10.1002/anie.201711735

    Article  CAS  Google Scholar 

  20. Yang S, Wang J, Huo SQ, Wang M, Zhang WJPB (2018) Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: strong bonding of different carbon residues. Polym Degrad Stab 128:89–98. https://doi.org/10.1016/j.polymdegradstab.2016.03.017

    Article  CAS  Google Scholar 

  21. Xu YJ, Wang J, Tan Y, Qi M, Chen L, Wang YZ (2018) A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chem Eng J 337:30–39. https://doi.org/10.1016/j.cej.2017.12.086

    Article  CAS  Google Scholar 

  22. Dittrich B, Wartig KA, Mülhaupt R, Schartel B (2014) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with grapheme. Polymers 6:2875–2895. https://doi.org/10.3390/polym6112875

    Article  CAS  Google Scholar 

  23. Jian RK, Ai YF, Xia L, Zhao LJ, Zhao HB (2019) Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. J Hazard Mater 371:529–539. https://doi.org/10.1016/j.jhazmat.2019.03.045

    Article  CAS  Google Scholar 

  24. Li P, Wang B, Xu YJ, Jiang ZM, Dong CH, Liu Y, Zhu P (2019) Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism. ACS Sustain Chem Eng 7:19246–19256. https://doi.org/10.1021/acssuschemeng.9b05523

    Article  CAS  Google Scholar 

  25. Camino G, Costa L, Martinasso G (1989) Intumescent fire-retardant systems. Polym Degrad Stab 23:359–376. https://doi.org/10.1016/0141-3910(89)90058-X

    Article  CAS  Google Scholar 

  26. Yan YW, Chen L, Jian RK, Kong S, Wang YZ (2012) Intumescence: an effect way to flame retardance and smoke suppression for polystyrene. Polym Degrad Stab 97:1423–1431. https://doi.org/10.1016/j.polymdegradstab.2012.05.013

    Article  CAS  Google Scholar 

  27. Bourbigot S, Le Bras M, Duquesne S, Rochery M (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289:499–511. https://doi.org/10.1002/mame.200400007

    Article  CAS  Google Scholar 

  28. Li B, Xu MJ (2006) Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab 91:1380–1386. https://doi.org/10.1016/j.polymdegradstab.2005.07.020

    Article  CAS  Google Scholar 

  29. Wang JS, Wang DY, Liu Y, Ge XG, Wang YZ (2008) Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J Appl Polym Sci 108:2644–2653. https://doi.org/10.1002/app.27522

    Article  CAS  Google Scholar 

  30. Zhu ZM, Wang LX, Lin XB, Dong LP (2019) Synthesis of a novel phosphorus-nitrogen flame retardant and its application in epoxy resin. Polym Degrad Stab 169:108981. https://doi.org/10.1016/j.polymdegradstab.2019.108981

    Article  CAS  Google Scholar 

  31. Chen MJ, Shao ZB, Wang XL, Chen L, Wang YZ (2012) Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant. Ind Eng Chem Res 51:9769–9776. https://doi.org/10.1021/ie301004d

    Article  CAS  Google Scholar 

  32. Gao LP, Wang DY, Wang YZ, Wang JS, Yang B (2008) A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym Degrad Stab 93:1308–1315. https://doi.org/10.1016/j.polymdegradstab.2008.04.004

    Article  CAS  Google Scholar 

  33. Wang CS, Lin CH (1999) Synthesis and properties of phosphorus-containing epoxy resins by novel method. J Polym Sci A: Polym Chem 37:3903–3909. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3903:AID-POLA4>3.0.CO;2-X

    Article  CAS  Google Scholar 

  34. Zhu ZM, Xu YJ, Liao W, Xu SM, Wang YZ (2017) Highly flame retardant expanded polystyrene foams from phosphorus-nitrogen-silicon synergistic adhesives. Ind Eng Chem Res 56:4649–4658. https://doi.org/10.1021/acs.iecr.6b05065

    Article  CAS  Google Scholar 

  35. Chen YJ, Wang W, Qiu Y, Li LS, Qian LJ, Xin F (2017) Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites. Polym Degrad Stab 140:166–175. https://doi.org/10.1016/j.polymdegradstab.2017.04.024

    Article  CAS  Google Scholar 

  36. Wei YX, Deng C, Zhao ZY, Wang YZ (2018) A novel organic-inorganic hybrid SiO2@DPP for the fire retardance of polycarbonate. Polym Degrad Stab 154:177–185. https://doi.org/10.1016/j.polymdegradstab.2018.05.014

    Article  CAS  Google Scholar 

  37. Wang PJ, Liao DJ, Hu XP, Pan N, Li WX, Wang DY, Yao Y (2019) Facile fabrication of biobased P–N–C-containing nano-layered hybrid: preparation, growth mechanism and its efficient fire retardancy in epoxy. Polym Degrad Stab 159:153–162. https://doi.org/10.1016/j.polymdegradstab.2018.11.024

    Article  CAS  Google Scholar 

  38. Schartel B, Hull TR (2017) Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater 31:327–354. https://doi.org/10.1002/fam.949

    Article  CAS  Google Scholar 

  39. Zhang CY, Zhao BC, Hao R, Wang Z, Hao YW, Zhao B, Liu YQ (2019) Graphene oxide-highly anisotropic noble metal hybrid systems for intensified surface enhanced Raman scattering and direct capture and sensitive discrimination in PCBs monitoring. J Hazard Mater 385:121510. https://doi.org/10.1016/j.jhazmat.2019.121510

    Article  CAS  Google Scholar 

  40. Rao WH, Hu ZY, Xu HX, Xu YJ, Qi M, Liao W, Xu SM, Wang YZ (2017) Flame-retardant flexible polyurethane foams with highly efficient melamine salt. Ind Eng Chem Res 56:7112–7119. https://doi.org/10.1021/acs.iecr.7b01335

    Article  CAS  Google Scholar 

  41. Jian RK, Wang P, Xia L, Zheng XL (2017) Effect of a novel P/N/S-containing reactive flame retardant on curing behavior, thermal and flame-retardant properties of epoxy resin. J Anal Appl Pyrol 127:360–368. https://doi.org/10.1016/j.jaap.2017.07.014

    Article  CAS  Google Scholar 

  42. Ma C, Qiu SL, Yu B, Wang JL, Wang CM, Zeng WR, Hu Y (2017) Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphine oxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins. Chem Eng J 322:618–631. https://doi.org/10.1016/j.cej.2017.04.070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Sichuan province Science and Technology Planning project (2018JY0534).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongmin Zhu or Bin Yu.

Ethics declarations

Conflict of interest

We confirm that the manuscript has been read and approved by all named authors. We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Lin, P., Wang, H. et al. A facile one-step synthesis of highly efficient melamine salt reactive flame retardant for epoxy resin. J Mater Sci 55, 12836–12847 (2020). https://doi.org/10.1007/s10853-020-04935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04935-6

Navigation