Role of script MC carbides on the tensile behavior of laser-welded fusion zone in DZ125L/IN718 joints at 650 °C


Script MC carbides are easily formed in the welding of Ni-base superalloys. In this study, the effect of script MC carbides on the tensile behavior of laser-welded DZ125L/IN718 joints in the fusion zone was investigated. The phase size, phase distribution and element distribution of script MC carbides, and the orientation relationship between script MC carbides and γ matrix were carefully analyzed using SEM, EDS, TEM and HRTEM. The breaking behavior of script MC carbides was investigated through interrupted tensile testing at 650 °C. The results demonstrate that the script MC carbides are distributed in the interdendrites with an average size of 3.5 \(\pm\) 1.6 μm. They are (Ta, Nb, W, Ti and Mo)C and incoherent with the γ matrix. The fine script MC carbides are beneficial for improving both the strength and ductility of the fusion zone by improving coordinated deformation with γ matrix. However, the script MC carbides are found broken very early. About 9% script MC carbides have been broken after welding. The number of broken carbides increases with the increasing plastic strain. The majority of the cracks are found at the necks of the script MC carbides. The breaking mechanism of script MC carbides reveals that the high breaking tendency of the neck is attributed to the relatively long arm length and, more importantly, to the minimum section width size. Modifying the carbide morphology into a sphere is suggested for lowering the breaking tendency of MC carbides.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1

    Long H, Mao S, Liu Y, Zhang Z, Han X (2018) Microstructural and compositional design of Ni-based single crystalline superalloys—a review. J Alloys Compd 743:203–220.

    CAS  Article  Google Scholar 

  2. 2

    Kotval PS, Venables JD, Calder RW (1972) The role of hafnium in modifying the microstructure of cast nickel-base superalloys. Metall Mater Trans B 3(2):457–462.

    Article  Google Scholar 

  3. 3

    Starink MJ, Cama H, Thomson RC (1997) MC carbides in the Hf containing Ni based superalloy MarM002. Scr Mater 38(1):73–80.

    Article  Google Scholar 

  4. 4

    Chen J, Lee JH, Jo CY, Choe SJ, Lee YT (1998) MC carbide formation in directionally solidified MAR-M247 LC superalloy. Mater Sci Eng A 247(1):113–125.

    Article  Google Scholar 

  5. 5

    Sun WR, Lee JH, Seo SM, Choe SJ, Hu ZQ (1999) The eutectic characteristic of MC-type carbide precipitation in a DS nickel-base superalloy. Mater Sci Eng A 271(1–2):143–149.

    Article  Google Scholar 

  6. 6

    Chen QZ, Jones CN, Knowles DM (2002) Effect of alloying chemistry on MC carbide morphology in modified RR2072 and RR2086 SX superalloys. Scr Mater 47(10):669–675.

    CAS  Article  Google Scholar 

  7. 7

    Chen QZ, Jones N, Knowles DM (2002) The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures. Acta Mater 50(5):1095–1112.

    CAS  Article  Google Scholar 

  8. 8

    Wang F, Xu W, Ma D, Bührig-Polaczek A (2019) Co-growing mechanism of γ/γ′ eutectic on MC-type carbide in Ni-based single crystal superalloys. J Alloys Compd 792:505–509.

    CAS  Article  Google Scholar 

  9. 9

    Yang J, Zheng Q, Sun X, Guan H, Hu Z (2006) Morphological evolution of MC carbide in K465 superalloy. J Mater Sci 41(19):6476–6478.

    CAS  Article  Google Scholar 

  10. 10

    Yang J, Zheng Q, Sun X, Guan H, Hu Z (2006) Relative stability of carbides and their effects on the properties of K465 superalloy. Mater Sci Eng A 429(1–2):341–347.

    CAS  Article  Google Scholar 

  11. 11

    Liu LR, Jin T, Zhao NR, Wang ZH, Sun XF, Guan HR, Hu ZQ (2004) Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy. Mater Sci Eng A 385(1–2):105–112.

    CAS  Article  Google Scholar 

  12. 12

    He LZ, Zheng Q, Sun XF, Guan HR, Hu ZQ, Tieu AK, Lu C, Zhu HT (2005) Effect of carbides on the creep properties of a Ni-base superalloy M963. Mater Sci Eng A 397(1–2):297–304.

    CAS  Article  Google Scholar 

  13. 13

    Liang T, Wang L, Liu Y, Song X (2018) Effects of strain rate on tensile deformation and fracture behavior of directionally solidified superalloy DZ125L. J Mater Eng Perform 27(2):721–727.

    CAS  Article  Google Scholar 

  14. 14

    Kurz W, Fisher DJ (1998) Fundamentals of solidification, 4th edn. Trans Tech Pub, Switzerland

    Google Scholar 

  15. 15

    Zhang W, Liu L (2012) Solidification microstructure of directionally solidified superalloy under high temperature gradient. Rare Met 31(6):541–546.

    CAS  Article  Google Scholar 

  16. 16

    Li XW, Wang L, Dong JS, Lou LH (2014) Effect of solidification condition and carbon content on the morphology of MC carbide in directionally solidified nickel-base superalloys. J Mater Sci Technol 30(12):1296–1300.

    CAS  Article  Google Scholar 

  17. 17

    David SA, Vitek JM, Babu SS, Boatner LA, Reed RW (1997) Welding of nickel base superalloy single crystals. Sci Technol Weld Joi 2(2):79–88.

    CAS  Article  Google Scholar 

  18. 18

    Pang M, Yu G, Wang HH, Zheng CY (2008) Microstructure study of laser welding cast nickel-based superalloy K418. J Mater Process Tech 207(1–3):271–275.

    CAS  Article  Google Scholar 

  19. 19

    Liang T, Wang L, Liu Y, Song X (2018) Microstructure and mechanical properties of laser welded joints of DZ125L and IN718 nickel base superalloys. Met Mater Int 24(3):604–615.

    CAS  Article  Google Scholar 

  20. 20

    Osoba LO, Ding RG, Ojo OA (2012) Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy. Mater Charact 65:93–99.

    CAS  Article  Google Scholar 

  21. 21

    Yang F, Liu E, Zhi Z, Tong J, Ning L (2014) Influence of Ti content on microstructure, mechanical properties and castability of directionally solidified superalloy DZ125L. Mater Des 61:41–49.

    CAS  Article  Google Scholar 

  22. 22

    Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge

    Google Scholar 

  23. 23

    Zheng L, Zhang G, Lee TL, Gorley MJ, Wang Y, Xiao C, Li Z (2014) The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications. Mater Des 61:61–69.

    CAS  Article  Google Scholar 

  24. 24

    Hollox GE (1968) Microstructure and mechanical behavior of carbides. Mater Sci Eng 3(3):121–137.

    CAS  Article  Google Scholar 

  25. 25

    Chen JH, Cao R (2015) Chapter 1—introduction. In: Chen JH, Cao R (eds) Micromechanism of cleavage fracture of metals. Butterworth-Heinemann, Boston, pp 1–54.

    Google Scholar 

  26. 26

    Yu Y (2013) Principles of metallography, 2nd edn. Metallurgical Industry Press, Beijing

    Google Scholar 

  27. 27

    Juvinall RC, Marshek KM (2006) Fundamentals of machine component design, 4th edn. Wiley, Hoboken

    Google Scholar 

  28. 28

    Zhou P, Yu J, Sun X, Guan H, Hu Z (2012) Roles of Zr and Y in cast microstructure of M951 nickel-based superalloy. T Nonferr Metal Soc 22(7):1594–1598.

    CAS  Article  Google Scholar 

  29. 29

    Huang HE, Koo CH (2004) Effect of zirconium on microstructure and mechanical properties of cast fine-grain CM 247 LC superalloy. Mater Trans 45(2):554–561.

    CAS  Article  Google Scholar 

  30. 30

    Bor HY, Chao CG, Ma CY (1999) The effects of Mg microaddition on the mechanical behavior and fracture mechanism of MAR-M247 superalloy at elevated temperatures. Metall Mater Trans A 30(3):551–561.

    Article  Google Scholar 

  31. 31

    Bor HY, Ma CY, Chao CG (2000) The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Metall Mater Trans A 31(5):1365–1373.

    Article  Google Scholar 

  32. 32

    Zhang HW, Wu YS, Qin XZ, Zhou LZ, Li XW (2018) Microstructures and high-temperature mechanical properties of a directionally solidified Ni-based superalloy: Influence of boron content. J Alloys Compd 767:915–923.

    CAS  Article  Google Scholar 

Download references


This study was financial supported by the National Natural Science Foundation of China (Grant Nos. U1708253 and 51571052), and the Science and Technology Major Project (Grant No. 2017-VI-0002).

Author information



Corresponding authors

Correspondence to Lei Wang or Yang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Wang, L., Liu, Y. et al. Role of script MC carbides on the tensile behavior of laser-welded fusion zone in DZ125L/IN718 joints at 650 °C. J Mater Sci 55, 13389–13397 (2020).

Download citation