New design of mesoporous SiO2 combined In2O3-graphene semiconductor nanocomposite for highly effective and selective gas detection


We successfully prepared multiple gas sensing devices comprising of a thin-film sensor made with mesoporous silica combined In2O3-graphene semiconductor nanocomposite for sensing CO2, O2, and NH3. We demonstrated that our sensor had high selectivity for CO2 by recognizing O2 and NH3 in the vapor stage with accurate transformation into electrical signals in devices. The mesoporous semiconducting In2O3–GO–SiO2-10% (IGS10) sensor showed quick response/recovery times for detecting gases, including CO2, O2, and NH3. Compared to In2O3, In2O3–GO (IG), and In2O3–GO–SiO2-20% (IGS20), the mesoporous IGS10 showed superior gas sensing ability due to the implied optimum ratio of the synthesized sample. Finally, we proved a facile, low-cost route to attain the multiple gas sensing devices with the potential for vast application.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Scheme 3


  1. 1

    Yan W, Fan H, Yang C (2011) Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe2O3/ZnO core-shell structure. Mater Lett 65(11):1595–1597

    CAS  Google Scholar 

  2. 2

    Jia X, Fan H (2010) Preparation and ethanol sensing properties of the superstructure SnO2/ZnO composite via alcohol-assisted hydrothermal route. Mater Res Bull 45(10):1496–1500

    CAS  Google Scholar 

  3. 3

    Fan H, Jia X (2011) Selective detection of acetone and gasoline by temperature modulation in zinc oxide nanosheets sensors. Solid State Ionics 192(1):688–692

    CAS  Google Scholar 

  4. 4

    Xiang Q, Meng GF, Zhao HB, Zhang Y, Li H, Ma WJ, Xu JQ (2010) Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J Phys Chem C 114(5):2049–2055

    CAS  Google Scholar 

  5. 5

    Li P, Cai Y, Fan H (2013) Porous thin sheet-based α-Fe2O3-doped In2O3 structures: hydrothermal synthesis and enhanced Cl2 sensing performance. RSC Adv 3(44):22239–22245

    CAS  Google Scholar 

  6. 6

    Haffer S, Waitz T, Tiemann M (2010) Mesoporous In2O3 with regular morphology by nanocasting: a simple relation between defined particle shape and growth mechanism. J Phys Chem C 114(5):2075–2081

    CAS  Google Scholar 

  7. 7

    Chang SC, Huang MH (2008) Formation of short In2O3 nanorod arrays within mesoporous silica. J Phys Chem C 112(7):2304–2307

    CAS  Google Scholar 

  8. 8

    Zhang Y, Zheng Z, Yang F (2010) Highly sensitive and selective alcohol sensors based on Ag-doped In2O3 coating. Ind Eng Chem Res 49(8):3539–3543

    CAS  Google Scholar 

  9. 9

    Lin CY, Fang YY, Lin CW, Tunney JJ, Ho KC (2010) Fabrication of NOx gas sensors using In2O3–ZnO composite films. Sens Actuators B Chem 146(1):28–34

    CAS  Google Scholar 

  10. 10

    Xu JQ, Wang XH, Shen JN (2006) Sens Actuators, B 115:642–646

    CAS  Google Scholar 

  11. 11

    Zhan Z, Jiang D, Xu J (2005) Investigation of a new In2O3-based selective H2 gas sensor with low power consumption. Mater Chem Phys 90(2–3):250–254

    CAS  Google Scholar 

  12. 12

    Lou X, Shi D, Liu S, Peng C (2007) Preparation of CdIn2O4 powder by sol–gel method and its Cl2 sensitivity properties. Sens Actuators B Chem 123(1):114–119

    CAS  Google Scholar 

  13. 13

    Kim SR, Hong HK, Kwon CH, Yun DH, Lee K, Sung YK (2000) Ozone sensing properties of In2O3-based semiconductor thick films. Sens Actuators B Chem 66(1–3):59–62

    CAS  Google Scholar 

  14. 14

    Ivanovskaya M, Kotsikau D, Faglia G, Nelli P (2003) Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sens Actuators B Chem 96(3):498–503

    CAS  Google Scholar 

  15. 15

    Zhao Y, Zhang Z, Wu Z, Dang H (2004) Synthesis and characterization of single-crystalline In2O3 nanocrystals via solution dispersion. Langmuir 20(1):27–29

    CAS  Google Scholar 

  16. 16

    Farvid SS, Dave N, Radovanovic PV (2009) Phase-controlled synthesis of colloidal In2O3 nanocrystals via size-structure correlation. Chem Mater 22(1):9–11

    Google Scholar 

  17. 17

    Chen C, Chen D, Jiao X, Chen S (2007) In2O3 nanocrystals with a tunable size in the range of 4–10 nm: one-step synthesis, characterization, and optical properties. J Phys Chem C 111(49):18039–18043

    CAS  Google Scholar 

  18. 18

    Wang G, Park J, Wexler D, Park MS, Ahn JH (2007) Synthesis, characterization, and optical properties of In2O3 semiconductor nanowires. Inorg Chem 46(12):4778–4780

    CAS  Google Scholar 

  19. 19

    Siciliano T, Tepore A, Micocci G, Genga A, Siciliano M, Filippo E (2011) Formation of In2O3 microrods in thermal treated InSe single crystal. Cryst Growth Des 11(5):1924–1929

    CAS  Google Scholar 

  20. 20

    Wang F, Xu CQ, He Q, Cai JP, Li XC, Wang D, Xiong X, Liao YH, Zeng QT, Yang YZ, Cheng X (2011) Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet 43(4):345–349

    CAS  Google Scholar 

  21. 21

    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Google Scholar 

  22. 22

    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  Google Scholar 

  23. 23

    Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores. ACS Nano 7(8):6899–6905

    CAS  Google Scholar 

  24. 24

    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    CAS  Google Scholar 

  25. 25

    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    CAS  Google Scholar 

  26. 26

    St Leger RJ, Nelson JO, Screen SE (1999) The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145(10):2691–2699

    CAS  Google Scholar 

  27. 27

    Licyayo DCM, Suzuki A, Matsumoto M (2007) Interactions among ammonia fungi on MY agar medium with varying pH. Mycoscience 48(1):20–28

    Google Scholar 

  28. 28

    Ong KG, Zeng K, Grimes CA (2002) A wireless, passive carbon nanotube-based gas sensor. IEEE Sens J 2(2):82–88

    CAS  Google Scholar 

  29. 29

    Jiang Z, Wang J, Meng L, Huang Y, Liu L (2011) A highly efficient chemical sensor material for ethanol: Al2O3/graphene nanocomposites fabricated from graphene oxide. Chem Commun 47(22):6350–6352

    CAS  Google Scholar 

  30. 30

    Tournier G, Pijolat C (2005) Selective filter for SnO2-based gas sensor: application to hydrogen trace detection. Sens Actuators B Chem 106(2):553–562

    CAS  Google Scholar 

  31. 31

    Massad-Ivanir N, Shtenberg G, Segal E (2013) Optical detection of E. coli bacteria by mesoporous silicon biosensors. JoVE (J Vis Exp) 81:50805

    Google Scholar 

  32. 32

    Ji H, Zeng W, Li Y (2019) Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11(47):22664–22684

    CAS  Google Scholar 

  33. 33

    Dowla BMRU, Cho JY, Jang WK, Oh WC (2017) Synthesis of BiVO4-G-PTFE nanocomposite photocatalysts for high efficient visible-light-induced photocatalytic performance for dyes. J Mater Sci Mater Electron 28(20):15106–15117

    Google Scholar 

  34. 34

    Dowla BMRU, Oh WC (2018) A review on sensing and functional application of graphene-polymer nanocomposite. J Multifunct Mater Photosci 9(1):49–113

    Google Scholar 

  35. 35

    Zhang Y, Li S, Zhang J, Pan Z, Min D, Li X, Song X, Liu J (2013) High-performance gas sensors with temperature measurement. Sci Rep 3:1267

    Google Scholar 

  36. 36

    Dowla BMRU, Oh WC (2017) An inclusive review of graphene-polymer nanocomposite: research position and developments. J Multifunct Mater Photosci 8(1):1–8

    Google Scholar 

  37. 37

    Biswas MRUD, Oh WC (2018) Synthesis of BiVO4-GO-PVDF nanocomposite: an excellent, newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies. Solid State Sci 80:22–30

    CAS  Google Scholar 

  38. 38

    RTD Company. Class 420 silicone rubber, surface mount thermocouples. 1 Dec 2012

  39. 39

    Li P, Fan H, Cai Y (2013) In2O3/SnO2 heterojunction microstructures: facile room temperature solid-state synthesis and enhanced Cl2 sensing performance. Sens Actuators B Chem 185:110–116

    CAS  Google Scholar 

  40. 40

    Biswas MRUD, Oh WC (2019) Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites. RSC advances 9(20):11484–11492

    CAS  Google Scholar 

  41. 41

    Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM (2012) Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt Express 20(17):19463–19473

    CAS  Google Scholar 

  42. 42

    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (B) 15(2):627–637

    CAS  Google Scholar 

  43. 43

    Li X, Li J, Zhou X, Ma Y, Zheng Z, Duan X, Qu Y (2014) Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy. Carbon 66:713–719

    CAS  Google Scholar 

  44. 44

    Poznyak SK, Golubev AN, Kulak AI (2000) Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders. Surf Sci 454:396–401

    Google Scholar 

  45. 45

    Kim J, Cote LJ, Huang J (2012) Two dimensional soft material: new faces of graphene oxide. Acc Chem Res 45(8):1356–1364

    CAS  Google Scholar 

  46. 46

    Niu Z, Liu L, Zhang L, Shao Q, Zhou W, Chen X, Xie S (2014) A universal strategy to prepare functional porous graphene hybrid architectures. Adv Mater 26(22):3681–3687

    CAS  Google Scholar 

  47. 47

    Guan Q, Cheng J, Wang B, Ni W, Gu G, Li X, Huang L, Yang G, Nie F (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6(10):7626–7632

    CAS  Google Scholar 

  48. 48

    Shanmugasundaram A, Ramireddy B, Basak P, Manorama SV, Srinath S (2014) Hierarchical In(OH)3 as a precursor to mesoporous In2O3 nanocubes: a facile synthesis route, mechanism of self-assembly, and enhanced sensing response toward hydrogen. J Phys Chem C 118(13):6909–6921

    CAS  Google Scholar 

  49. 49

    Zhu H, Wang X, Yang F, Yang X (2008) Template-free, surfactantless route to fabricate In(OH)3 monocrystalline nanoarchitectures and their conversion to In2O3. Cryst Growth Des 8(3):950–956

    CAS  Google Scholar 

  50. 50

    Tricoli A, Righettoni M, Teleki A (2010) Semiconductor gas sensors: dry synthesis and application. Angew Chem Int Ed 49(42):7632–7659

    CAS  Google Scholar 

  51. 51

    Huang J, Xu X, Gu C, Yang M, Yang M, Liu J (2011) Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties. J Mater Chem 21(35):13283–13289

    CAS  Google Scholar 

  52. 52

    Darbandi M, Thomann R, Nann T (2005) Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater 17(23):5720–5725

    CAS  Google Scholar 

  53. 53

    Darbandi M, Lu W, Fang J, Nann T (2006) Silica encapsulation of hydrophobically ligated PbSe nanocrystals. Langmuir 22(9):4371–4375

    CAS  Google Scholar 

  54. 54

    Mokari T, Sertchook H, Aharoni A, Ebenstein Y, Avnir D, Banin U (2005) Nano@ micro: general method for entrapment of nanocrystals in sol–gel-derived composite hydrophobic silica spheres. Chem Mater 17(2):258–263

    CAS  Google Scholar 

  55. 55

    Yang S, Feng X, Wang L, Tang K, Maier J, Müllen K (2010) Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed 49(28):4795–4799

    CAS  Google Scholar 

  56. 56

    Wang X, Li Y, Li Z, Zhang S, Deng X, Zhao G, Xu X (2019) Highly sensitive and low working temperature detection of trace triethylamine based on TiO2 nanoparticles decorated CuO nanosheets sensors. Sens Actuators B Chem 301:127019

    CAS  Google Scholar 

  57. 57

    Wang X, Wang T, Si G, Li Y, Zhang S, Deng X, Xu X (2020) Oxygen vacancy defects engineering on Ce-doped α-Fe2O3 gas sensor for reducing gases. Sens Actuators B Chem 302:127165

    CAS  Google Scholar 

  58. 58

    Wang X, Zhang S, Shao M, Huang J, Deng X, Hou P, Xu X (2017) Fabrication of ZnO/ZnFe2O4 hollow nanocages through metal organic frameworks route with enhanced gas sensing properties. Sens Actuators B Chem 251:27–33

    CAS  Google Scholar 

  59. 59

    Shankar P, Rayappan JBB (2015) Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases: a review. Sci Lett J 4(4):126

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Won-Chun Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 155 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fatema, K.N., Sagadevan, S., Liu, Y. et al. New design of mesoporous SiO2 combined In2O3-graphene semiconductor nanocomposite for highly effective and selective gas detection. J Mater Sci 55, 13085–13101 (2020).

Download citation