Atmospheric pressure atomic layer deposition of iron oxide nanolayer on the Al2O3/SiO2/Si substrate for mm-tall vertically aligned CNTs growth

Abstract

Atmospheric pressure atomic layer deposition (AP-ALD) of iron oxide, as a catalyst for water-assisted chemical vapor deposition (WA-CVD) growth of vertically aligned carbon nanotubes (VA-CNTs), was studied. Fe2O3 film was deposited on the porous Al2O3/SiO2/Si substrate using ferrocene and O2 as precursors. The self-liming film growth was obtained at the temperature window of about 180–250 °C with the optimum dosing and purging duration of about 20 min. The rather longer dosing time here compared to the conventional ALD is attributed to the high pressure as well as high porosity of the substrate. Considering the lower deposition rate at the beginning of the growth, it is suggested that the substrate-inhibited growth mode takes place in this work. The grown films have been characterized by SEM, AFM, Raman, and XRR. Raman spectroscopy peaks were consistent with the formation of Fe2O3. SEM images showed that the uniform coating of Fe2O3 follows the Volmer–Weber growth mode. The catalyst thickness-dependent growth of VACNTs revealed that the deposition through 12 cycles at 250 °C provides sufficient thickness, which resulted in the growth of mm-tall VA-CNTs within a relatively short time of WA-CVD. The changes in the catalyst, i.e. surface roughness and particle size, as a function of WA-CVD time were investigated. The time-dependent evolutions were mainly due to the subsurface diffusion and Ostwald ripening that ultimately led to the growth termination of CNTs.

Graphic abstract

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

References

  1. 1

    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994. https://doi.org/10.1038/nmat1782

    CAS  Article  Google Scholar 

  2. 2

    Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53. https://doi.org/10.1039/c2ee23284g

    CAS  Article  Google Scholar 

  3. 3

    Zhang H, Cao G, Yang Y (2009) Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ Sci 2:932–943. https://doi.org/10.1039/b906812k

    CAS  Article  Google Scholar 

  4. 4

    Cheng J, Zhao B, Zhang W, Shi F, Zheng G, Zhang D, Yang J (2015) High-performance supercapacitor applications of NiO-nanoparticle-decorated millimeter-long vertically aligned carbon nanotube arrays via an effective supercritical CO2-assisted method. Adv Funct Mater 25:7381–7391. https://doi.org/10.1002/adfm.201502711

    CAS  Article  Google Scholar 

  5. 5

    Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM (2006) Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotechnol 1:18–22. https://doi.org/10.1038/nnano.2006.56

    CAS  Article  Google Scholar 

  6. 6

    Wei C, Dai L, Roy A, Tolle TB (2006) Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J Am Chem Soc 128:1412–1413

    CAS  Article  Google Scholar 

  7. 7

    Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci USA 104:1–4

    Article  Google Scholar 

  8. 8

    Fornasiero F, Gyu H, Holt JK, Stadermann M, Grigoropoulos CP, Noy A, Bakajin O (2008) Ion exclusion by sub-2-nm carbon nanotube pores. Proc Natl Acad Sci 105(45):17250–17255

    CAS  Article  Google Scholar 

  9. 9

    Holt JK (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science. https://doi.org/10.1126/science.1126298

    Article  Google Scholar 

  10. 10

    Nednoor P, Gavalas VG, Chopra N, Hinds J, Bachas LG (2007) Carbon nanotube based biomimetic membranes : mimicking protein channels regulated by phosphorylation. J Mater Chem J Mater Chem A. https://doi.org/10.1039/b703365f

    Article  Google Scholar 

  11. 11

    Futaba DN, Hata K, Yamada T, Mizuno K, Yumura M, Iijima S (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 056104:1–4. https://doi.org/10.1103/PhysRevLett.95.056104

    CAS  Article  Google Scholar 

  12. 12

    Hata K, Futaba DN, Mizuno K, Namai T, Yumura M (2010) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364

    Article  Google Scholar 

  13. 13

    Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Influence of hydrogen pretreatment condition on the morphology of Fe / Al 2 O 3 catalyst film and growth of millimeter-long carbon nanotube array. J Phys Chem C 112:4524–4530

    CAS  Article  Google Scholar 

  14. 14

    Di J, Yong Z, Yang X, Li Q (2011) Structural and morphological dependence of carbon nanotube arrays on catalyst aggregation. Appl Surf Sci 258:13–18. https://doi.org/10.1016/j.apsusc.2011.07.130

    CAS  Article  Google Scholar 

  15. 15

    Wang Y, Luo Z, Li B, Ho PS, Yao Z, Shi L, Bryan EN, Nemanich RJ (2007) Comparison study of catalyst nanoparticle formation and carbon nanotube growth: support effect. J Appl Phys. https://doi.org/10.1063/1.2749412

    Article  Google Scholar 

  16. 16

    Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT, Hauge RH, Maruyama B (2009) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9:44–49. https://doi.org/10.1021/nl801876h

    CAS  Article  Google Scholar 

  17. 17

    Yun Y, Shanov V, Tu Y, Subramaniam S, Schulz MJ (2006) Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition. J Phys Chem B 110:23920–23925

    CAS  Article  Google Scholar 

  18. 18

    Pint CL, Pheasant ST, Parra-Vasquez ANG, Horton C, Xu Y, Hauge RH (2009) Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J Phys Chem C 113:4125–4133. https://doi.org/10.1021/jp8070585

    CAS  Article  Google Scholar 

  19. 19

    Kim SM, Cary LP, Placidus BA, Dmitri NZ, Robert HH, Maruyama B, Stach EA (2010) Evolution in catalyst morphology leads to carbon nanotube growth termination. J Phys Chem Lett 1:918–922. https://doi.org/10.1021/jz9004762

    CAS  Article  Google Scholar 

  20. 20

    Sengupta J, Jacob ÆC (2010) The effect of Fe and Ni catalysts on the growth of multiwalled carbon nanotubes using chemical vapor deposition. J Nanoparticle Res 12:457–465. https://doi.org/10.1007/s11051-009-9667-1

    CAS  Article  Google Scholar 

  21. 21

    Li BQ, Zhang X, Depaula RF, Zheng L, Zhao Y, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT (2006) Sustained growth of ultralong carbon nanotube arrays for fiber spinning **. Adv Mater. https://doi.org/10.1002/adma.200601344

    Article  Google Scholar 

  22. 22

    Xiong G-Y, Wang DZ, Ren ZF (2006) Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon N Y 44:969–973. https://doi.org/10.1016/j.carbon.2005.10.015

    CAS  Article  Google Scholar 

  23. 23

    Yamada T, Namai T, Hata K, Futaba DONN, Mizuno K, Fan J, Yudasaka M, Yumura M, Iijima S (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol. https://doi.org/10.1038/nnano.2006.95

    Article  Google Scholar 

  24. 24

    Christen HM, Puretzky AA, Cui H, Belay K, Fleming PH (2004) Rapid growth of long, vertically aligned carbon nanotubes through efficient catalyst optimization using metal film gradients. Nano Lett 4:1939–1942

    CAS  Article  Google Scholar 

  25. 25

    Lettiere BR, Chazot CAC, Cui K, John Hart A (2020) High-density carbon nanotube forest growth on copper foil for enhanced thermal and electrochemical interfaces. ACS Appl Nano Mater 3:77–83. https://doi.org/10.1021/acsanm.9b01595

    CAS  Article  Google Scholar 

  26. 26

    Teblum E, Noked M, Grinblat J, Kremen A, Muallem M, Fleger Y, Tischler YR, Aurbach D, Nessim GD (2014) Millimeter-tall carpets of vertically aligned crystalline carbon nanotubes synthesized on copper substrates for electrical applications. J Phys Chem C 118:19345–19355. https://doi.org/10.1021/jp5015719

    CAS  Article  Google Scholar 

  27. 27

    Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2014) Aligned multiwalled carbon nanotube membranes. Science 62:62–65. https://doi.org/10.1126/science.1092048

    CAS  Article  Google Scholar 

  28. 28

    Pradhan NR, Duan H, Liang J, Iannacchione GS (2009) The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology 20:245705. https://doi.org/10.1088/0957-4484/20/24/245705

    CAS  Article  Google Scholar 

  29. 29

    Li J, Papadopoulos C, Xu JM, Moskovits M, Li J, Papadopoulos C, Xu JM (2013) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 367:10–13. https://doi.org/10.1063/1.124377

    Article  Google Scholar 

  30. 30

    Matsumoto N, Oshima A, Ishizawa S, Chen G, Hata K, Futaba DN (2018) One millimeter per minute growth rates for single wall carbon nanotube forests enabled by porous metal substrates. RSC Adv 8:7810–7817. https://doi.org/10.1039/c7ra13093g

    CAS  Article  Google Scholar 

  31. 31

    Matsumoto N, Ishizawa S, Hata K, Futaba DN (2018) High yield single-walled carbon nanotube synthesis through multilayer porous mesh substrates∗. E-J Surf Sci Nanotechnol 16:279–282. https://doi.org/10.1380/ejssnt.2018.279

    CAS  Article  Google Scholar 

  32. 32

    Kim DY, Sugime H, Hasegawa K, Osawa T, Noda S (2011) Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor. Carbon N Y 49:1972–1979. https://doi.org/10.1016/j.carbon.2011.01.022

    CAS  Article  Google Scholar 

  33. 33

    Chen Z, Kim DY, Hasegawa K, Osawa T, Noda S (2014) Over 99.6 wt%-pure, sub-millimeter-long carbon nanotubes realized by fluidized-bed with careful control of the catalyst and carbon feeds. Carbon NY 80:339–350. https://doi.org/10.1016/j.carbon.2014.08.072

    CAS  Article  Google Scholar 

  34. 34

    Xiang R, Luo G, Qian W, Wang Y, Wei F, Li Q (2007) Large area growth of aligned CNT arrays on spheres: towards large scale and continuous production. Chem Vap Depos 13:533–536. https://doi.org/10.1002/cvde.200704249

    CAS  Article  Google Scholar 

  35. 35

    Zhaoli Gao MMFY, Zhang X, Zhang K (2015) Growth of vertically aligned carbon nanotube arrays on al substrates through controlled diffusion of catalyst. J Phys Chem C 119:15636–15642

    Article  Google Scholar 

  36. 36

    Chiang W, Futaba DN, Yumura M, Hata K (2011) Growth control of single-walled, double-walled, and triple-walled carbon nanotube forests by a priori electrical resistance measurement of catalyst films. Carbon N Y 49:4368–4375. https://doi.org/10.1016/j.carbon.2011.06.015

    CAS  Article  Google Scholar 

  37. 37

    Chen G, Sakurai S, Yumura M, Hata K, Futaba DN (2016) Highly pure, millimeter-tall, sub-2-nanometer diameter single-walled carbon nanotube forests. Carbon N Y 107:433–439. https://doi.org/10.1016/j.carbon.2016.06.024.This

    CAS  Article  Google Scholar 

  38. 38

    Zhu M, Wachs IE (2015) Iron-based catalysts for the high temperature water-gas shift (ht-wgs ) reaction : a review. ACS Catal 6:722–732. https://doi.org/10.1021/acscatal.5b02594

    CAS  Article  Google Scholar 

  39. 39

    Lv X, Deng J, Sun X (2016) Cumulative effect of Fe 2 O 3 on TiO 2 nanotubes via atomic layer deposition with enhanced lithium ion storage performance. Appl Surf Sci 369:314–319

    CAS  Article  Google Scholar 

  40. 40

    Klahr BM, Martinson ABF, Hamann TW (2011) Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 109:13685–13692. https://doi.org/10.1021/la103541n

    CAS  Article  Google Scholar 

  41. 41

    Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting : progress using hematite ( a -Fe 2 O 3) photoelectrodes. Chemsuschem 4:432–449. https://doi.org/10.1002/cssc.201000416

    CAS  Article  Google Scholar 

  42. 42

    Beermann N, Vayssieres L, Lindquist S, Hagfeldt A, Soc JE, Beermann N, Vayssieres L, Lindquist S, Hagfeldt A (2000) Photoelectrochemical studies of oriented nanorod thin films of hematite photoelectrochemical studies of oriented nanorod thin films of hematite. J Electrochem Soc 147:2456–2461. https://doi.org/10.1149/1.1393553

    CAS  Article  Google Scholar 

  43. 43

    Zolghadr S, Khojier K, Kimiagar S (2015) Ammonia sensing properties of α -Fe 2 O 3 thin films during post-annealing process. Procedia Mater Sci 11:469–473. https://doi.org/10.1016/j.mspro.2015.11.058

    CAS  Article  Google Scholar 

  44. 44

    Tamm A, Dimri MC, Kozlova J, Aidla A, Tanel T, Hugo M, Stern R, Kukli K, Uno M (2012) Atomic layer deposition of ferromagnetic iron oxide films on three-dimensional substrates with tin oxide nanoparticles. J Cryst Growth 343:21–27. https://doi.org/10.1016/j.jcrysgro.2011.09.062

    CAS  Article  Google Scholar 

  45. 45

    Pirota KR, Navas D, Hernández-vélez M (2004) Novel magnetic materials prepared by electrodeposition techniques : arrays of nanowires and multi-layered microwires. J Alloys Compd 369:18–26. https://doi.org/10.1016/j.jallcom.2003.09.040

    CAS  Article  Google Scholar 

  46. 46

    George SM (2010) Atomic layer deposition : an overview. Chem Rev 110:111–131

    CAS  Article  Google Scholar 

  47. 47

    Mousa MBM, Oldham CJ, Jur JS, Parsons GN, Mousa MBM, Oldham CJ, Carolina N, Carolina N, Parsons GN (2012) Effect of temperature and gas velocity on growth per cycle during Al 2 O 3 and ZnO atomic layer deposition at atmospheric pressure. J Vacu Acuum Sci Technol A. https://doi.org/10.1116/1.3670961

    Article  Google Scholar 

  48. 48

    Beetstra BR, Lafont U, Nijenhuis J, Kelder EM, Van Ommen JR (2009) Atmospheric pressure process for coating particles using atomic layer deposition **. Chem Vap Depos 15:227–233. https://doi.org/10.1002/cvde.200906775

    CAS  Article  Google Scholar 

  49. 49

    Mameli PP, Schulpen J, Roozeboom WMMEK, Roozeboom F (2017) Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition. J. Vacu Acuum Sci Technol A 10(1116/1):4973350

    Google Scholar 

  50. 50

    Mousa MBM, Oldham CJ, Parsons GN (2014) Atmospheric pressure atomic layer deposition of Al 2 O 3 using trimethyl aluminum and ozone. Langmuir 30:3741–3748

    CAS  Article  Google Scholar 

  51. 51

    Lie AKM, Fjellva˚g H (2005) Growth of Fe 2 O 3 thin films by atomic layer deposition. Thin Solid Films 488:74–81. https://doi.org/10.1016/j.tsf.2005.04.063

    CAS  Article  Google Scholar 

  52. 52

    Ma˚rten Rooth A, Johansson, Kukli K, Aarik J, Boman M, Ha A (2008) Atomic layer deposition of iron oxide thin films and nanotubes using ferrocene and oxygen as precursors **. Chem. Vap. Depos. 14:67–70. https://doi.org/10.1002/cvde.200706649

    CAS  Article  Google Scholar 

  53. 53

    Scheffe JR, Francés A, King DM, Liang X, Branch BA, Cavanagh AS, George SM, Weimer AW (2009) Atomic layer deposition of iron ( III ) oxide on zirconia nanoparticles in a fluidized bed reactor using ferrocene and oxygen. Thin Solid Films 517:1874–1879. https://doi.org/10.1016/j.tsf.2008.09.086

    CAS  Article  Google Scholar 

  54. 54

    Martinson ABF, Devries MJ, Libera JA, Christensen ST, Hupp JT, Pellin MJ, Elam W (2011) Atomic layer deposition of Fe 2 O 3 using ferrocene and ozone. J Phys Chem C 115:4333–4339

    CAS  Article  Google Scholar 

  55. 55

    Bachmann J, Jing J, Knez M, Barth S, Shen H, Mathur S, Planck M, Physics M, Weinberg A (2007) Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J Am Chem Soc 5:9554–9555

    Article  Google Scholar 

  56. 5

    Lim BS, Rahtu A, Gordon ROYG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749–754. https://doi.org/10.1038/nmat1000

    CAS  Article  Google Scholar 

  57. 57

    Elam W, Pellin J, Proslier T (2013) Low temperature atomic layer deposition of highly photoactive hematite using iron(iii) chloride and water. J Mater Chem Aournal Mater Chem A. https://doi.org/10.1039/c3ta12514a

    Article  Google Scholar 

  58. 58

    Selvaraj S, Moon H, Yun J, Kim D (2016) Iron oxide grown by low-temperature atomic layer deposition. Korean J Chem Eng 33:3516–3522. https://doi.org/10.1007/s11814-016-0319-8

    CAS  Article  Google Scholar 

  59. 59

    Li BX, Fan NC, Fan HJ (2013) A micro-pulse process of atomic layer deposition of iron oxide using ferrocene and ozone precursors and Ti-doping. Chem Vap Depos 19:104–110. https://doi.org/10.1002/cvde.201207030

    CAS  Article  Google Scholar 

  60. 60

    Puurunen RL (2005) Surface chemistry of atomic layer deposition : a case study for the trimethylaluminum/water process. J Appl Phys. https://doi.org/10.1063/1.1940727

    Article  Google Scholar 

  61. 61

    T.E. Society, M. Leskel (2004) Atomic layer deposition of iridium thin films. J Electrochem Soc 151:489–492. https://doi.org/10.1149/1.1761011

    CAS  Article  Google Scholar 

  62. 62

    Jur JS, Parsons GN (2011) Atomic layer deposition of Al 2 O 3 and ZnO at atmospheric pressure in a flow tube reactor. Appl Mater Interfaces 3:299–308

    CAS  Article  Google Scholar 

  63. 63

    Gao F, Jiang J, Du L, Liu X, Ding Y (2018) General stable and highly efficient Cu / TiO 2 nanocomposite photocatalyst prepared through atomic layer deposition. Appl Catal A Gen 568:168–175

    CAS  Article  Google Scholar 

  64. 64

    Mackus AJM, Baker L, Kessels WMM (2012) Catalytic combustion and dehydrogenation reactions during atomic layer deposition of platinum. Chem Mater 24:1752–1761

    CAS  Article  Google Scholar 

  65. 65

    Aaltonen T, Rahtu A, Ritala M, Leskelä M (2003) Reaction mechanism studies on atomic layer deposition of ruthenium and platinum. Electrochem Solid State Lett 6:133–C133. https://doi.org/10.1149/1.1595312

    CAS  Article  Google Scholar 

  66. 66

    Park SK, Kanjolia R, Anthis J, Odedra R, Boag N, Wielunski L, Chabal YJ (2010) Atomic layer deposition of Ru/RuO2 thin films studied by in situ infrared spectroscopy. Chem Mater 22:4867–4878. https://doi.org/10.1021/cm903793u

    CAS  Article  Google Scholar 

  67. 67

    Aaltonen BT, Aløn P, Ritala M, Leskelä M (2003) Ruthenium thin films grown by atomic layer deposition **. Chem Vap Depos 9:45–49

    CAS  Article  Google Scholar 

  68. 68

    Aaltonen T, Ritala M, Arstila K, Keinonen J, Leskelä M (2004) Atomic layer deposition of ruthenium thin films from Ru(thd)3 and oxygen. Chem Vap Depos 10:215–219. https://doi.org/10.1002/cvde.200306288

    CAS  Article  Google Scholar 

  69. 69

    Dyagileve M, Mar VP (1979) Reactivity of the first transition row metallocenes in thermal decomposition reaction. J Organomet Chem 175:63–72

    Article  Google Scholar 

  70. 70

    Jeong M, Yeon S, Han D, Wook S, Hee I, Lee M, Kyu Y, Dok Y (2016) General High-performing and durable MgO / Ni catalysts via atomic layer deposition for CO 2 reforming of methane ( CRM ). Appl Catal A Gen 515:45–50

    CAS  Article  Google Scholar 

  71. 71

    Edy R, Huang G, Zhao Y, Guo Y (2017) Influence of reactive surface groups on the deposition of oxides thin film by atomic layer deposition. Surf Coat Technol 329:149–154. https://doi.org/10.1016/j.surfcoat.2017.09.047

    CAS  Article  Google Scholar 

  72. 72

    Pisana SÃ, Cantoro M, Parvez A, Hofmann S, Ferrari AC, Robertson J (2007) The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth. Physica E 37:1–5. https://doi.org/10.1016/j.physe.2006.06.014

    CAS  Article  Google Scholar 

  73. 73

    Amama PB, Pint CL, Kim SM, Mcjilton KL, Eyink KG, Stach EA, Hauge RH, Maruyama B (2010) Influence of alumina type on the evolution and activity of alumina- supported Fe catalysts in single-walled carbon nanotube carpet growth. ACSNANO 4:895–904

    CAS  Google Scholar 

  74. 74

    Kaushik P, Eliáš M, Michalička J, Hegemann D, Pytlíček Z, Nečas D, Zajíčková L (2019) Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing. Surf Coat Technol 370:235–243

    CAS  Article  Google Scholar 

  75. 75

    Manuscript A (2014) Plasma enhanced atomic layer deposition of Fe2O3 thin films. J Mater Chem Aournal Mater Chem A 2:10662–10667. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  76. 76

    Shang R, Goulas A, Tang CY, De Frias X, Rietveld LC, Heijman SGJ (2017) Atmospheric pressure atomic layer deposition for tight ceramic nano filtration membranes : synthesis and application in water purification. J Memb Sci 528:163–170

    CAS  Article  Google Scholar 

  77. 77

    Leick N, Verkuijlen ROF, Lamagna L, Langereis E, Rushworth S, Roozeboom F, Van De Sanden MCM, Kessels WMM (2015) Atomic layer deposition of Ru from CpRu ( CO ) 2 Et using O 2 gas and O 2 plasma atomic layer deposition of Ru from CpRu „ CO 2 Et using O 2 gas and O 2 plasma. J Vacuacuum Sci Technol A. https://doi.org/10.1116/1.3554691

    Article  Google Scholar 

  78. 78

    Vuurmant MA, Wachs IE (1992) In situ raman spectroscopy of alumina-supported metal oxide catalysts. J Phys Chem 96:5008–5016

    Article  Google Scholar 

  79. 79

    Ming T, Monai M, Dai S, Arroyo-ramirez L, Zhang S, Pan X, Graham GW, Fornasiero P, Gorte RJ (2017) High-surface-area, iron-oxide films prepared by atomic layer deposition on γ-Al2O3. Appl Catal A Gen 534:70–77

    Article  Google Scholar 

  80. 80

    ONS Ã, Lazor P (2003) Raman spectroscopic study of magnetite ( FeFe 2 O 4 ): a new assignment for the vibrational spectrum, J Solid State Chem 174: 424–430. https://doi.org/10.1016/S0022-4596(03)00294-9.

  81. 81

    Arcos TDL, Garnier MG, Seo JW, Oelhafen P, Thommen V, Mathys D (2004) The Influence of catalyst chemical state and morphology on carbon nanotube growth. J Phys Chem B 108:7728–7734

    Article  Google Scholar 

  82. 82

    Teblum E, Gofer Y, Pint CL, Nessim GD (2012) Role of catalyst oxidation state in the growth of vertically aligned carbon nanotubes. J Phys Chem C 116:24522–24528

    CAS  Article  Google Scholar 

  83. 83

    Ago H, Nakamura K, Uehara N, Tsuji M (2004) Roles of metal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO. J Phys Chem B 108:18908–18915

    CAS  Article  Google Scholar 

  84. 84

    De Los Arcos T, Garnier MG, Seo JW, Oelhafen P, Thommen V, Mathys D (2004) The influence of catalyst chemical state and morphology on carbon nanotube growth. J Phys Chem B 108:7728–7734. https://doi.org/10.1021/jp049495v

    CAS  Article  Google Scholar 

  85. 85

    Nessim GD, Hart AJ, Kim JS, Acquaviva D, Oh J, Morgan CD, Seita M, Leib JS, Thompson CV (2008) Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Lett 8:3587–3593

    CAS  Article  Google Scholar 

  86. 86

    Pint CL, Nicholas N, Pheasant ST, Duque JG, Parra-Vasquez NG, Eres G, Pasquali M, Hauge RH (2008) Temperature and gas pressure effects in vertically aligned carbon nanotube growth from Fe-Mo catalyst. J Phys Chem C 112:14041–14051. https://doi.org/10.1021/jp8025539

    CAS  Article  Google Scholar 

  87. 87

    Bedewy M, Meshot ER, Guo H, Verploegen EA, Lu W, Hart AJ (2009) Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J Phys Chem C 113:20576–20582. https://doi.org/10.1021/jp904152v

    CAS  Article  Google Scholar 

  88. 88

    Bedewy M, Meshot ER, Reinker MJ, Hart AJ (2011) Population growth dynamics of carbon nanotubes. ACSNANO. 11:8974–8989

    Google Scholar 

  89. 89

    Cho W, Schulz M, Shanov V (2014) Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon N Y 2:264–273

    Article  Google Scholar 

  90. 90

    Hasegawa K, Noda S (2011) Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water. ACS Nano 5:975–984. https://doi.org/10.1021/nn102380j

    CAS  Article  Google Scholar 

  91. 91

    Hong NT, Koh KH, Lee S (2008) Fast growth of millimeter-long vertically-aligned carbon nanotubes via hot filament chemical vapor deposition. J Korean Phys Soc 53:3603–3607. https://doi.org/10.3938/jkps.53.3603

    CAS  Article  Google Scholar 

  92. 92

    Zhong G, Iwasaki T, Robertson J, Kawarada H (2007) Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J Phys Chem B 111:1907–1910. https://doi.org/10.1021/jp067776s

    CAS  Article  Google Scholar 

  93. 93

    Chakrabarti S, Gong K, Dai L (2008) Structural evaluation along the nanotube length for super-long vertically aligned double-walled carbon nanotube arrays. J Phys Chem C 112:8136–8139. https://doi.org/10.1021/jp802059t

    CAS  Article  Google Scholar 

  94. 94

    Chakrabarti S, Nagasaka T, Yoshikawa Y, Pan L, Nakayama Y (2006) Growth of super long aligned brush-like carbon nanotubes. Jpn J Appl Phys Part Lett 45:10–13. https://doi.org/10.1143/JJAP.45.L720

    CAS  Article  Google Scholar 

  95. 95

    Li Y, Xu G, Zhang H, Li T, Yao Y, Li Q, Dai Z (2015) Alcohol-assisted rapid growth of vertically aligned carbon nanotube arrays. Carbon N Y 91:45–55. https://doi.org/10.1016/j.carbon.2015.04.035

    CAS  Article  Google Scholar 

  96. 96

    Nessim GD, Al-obeidi A, Grisaru H, Polsen ES, Oliver CR, Zimrin T, Hart AJ, Aurbach D, Thompson CV (2012) Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen. Carbon 50:4002–4009

    CAS  Article  Google Scholar 

  97. 97

    Cho W, Schulz M (2014) Growth termination mechanism of vertically aligned centimeter long carbon nanotube arrays. Carbon N Y 9:609–620

    Article  Google Scholar 

  98. 98

    Jung H, Kim W, Oh I, Lee C, Lansalot-matras C, Lee SJ, Myoung J, Lee H, Kim H (2016) Growth characteristics and electrical properties of SiO 2 thin films prepared using plasma-enhanced atomic layer deposition and chemical vapor deposition with an aminosilane precursor. J Mater Sci 51:5082–5091. https://doi.org/10.1007/s10853-016-9811-0

    CAS  Article  Google Scholar 

  99. 99

    Dominguez GSD, Borbo´n-Nun˜ez HA, Romo-Herrera JM, Mun˜oz-Mun˜oz F, Reynoso-Soto EA, Tiznado H (2017) Optimal sidewall functionalization for the growth of ultrathin TiO 2 nanotubes via atomic layer deposition. J Mater Sci 53:2005–2015. https://doi.org/10.1007/s10853-017-1632-2

    CAS  Article  Google Scholar 

  100. 100

    Maigne A, Matsuo Y, Nakamura E, Yumura M, Hata K (2012) Role of subsurface diffusion and ostwald ripening in catalyst formation for single-walled carbon nanotube forest growth. J Am Chem Soc 134:2148–2153

    Article  Google Scholar 

  101. 101

    Lee J, Lee H, Park J, Lee D, Lee K, Jo B, Cho K, Min S (2016) Effects of SiO2 sub-supporting layer on the structure of a Al2O3 supporting layer, formation of Fe catalyst particles, and growth of carbon nanotube forests. RSV Adv. https://doi.org/10.1039/c6ra12250g

    Article  Google Scholar 

  102. 102

    Patole SP, Yu S, Shin D, Kim H (2010) The effect of barrier layer-mediated catalytic deactivation in vertically aligned carbon nanotube growth. J Phys D Appl Phys 43:1–7. https://doi.org/10.1088/0022-3727/43/9/095304

    CAS  Article  Google Scholar 

  103. 103

    Meshot ER, Hart AJ, Meshot ER, Hart AJ (2013) Abrupt self-termination of vertically aligned carbon nanotube. Appl Phys Lett 113107:90–93. https://doi.org/10.1063/1.2889497

    CAS  Article  Google Scholar 

  104. 104

    Stadermann M, Sherlock SP, In J, Fornasiero F, Park HG, Artyukhin AB, Wang Y, De Yoreo JJ, Grigoropoulos CP, Bakajin O, Chernov AA, Noy A (2009) Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett 9:738–744

    CAS  Article  Google Scholar 

  105. 105

    Arcos TDL, Oelhafen P, Mathys D (2009) The importance of catalyst oxidation for the growth of carbon nanotubes on Si substrates. Carbon N Y 47:1977–1982. https://doi.org/10.1016/j.carbon.2009.03.049

    CAS  Article  Google Scholar 

  106. 106

    Search H, Journals C, Contact A, Iopscience M, Address IP (2010) Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth. Appl Phys Express 3:3–6. https://doi.org/10.1143/APEX.3.045103

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abbas Ali Khodadadi.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vahdatifar, S., Mortazavi, Y. & Khodadadi, A.A. Atmospheric pressure atomic layer deposition of iron oxide nanolayer on the Al2O3/SiO2/Si substrate for mm-tall vertically aligned CNTs growth. J Mater Sci (2020). https://doi.org/10.1007/s10853-020-04922-x

Download citation