Fabrication of a novel core–shell CQDs@ZIF-8 composite with enhanced photocatalytic activity

Abstract

Metal–organic frameworks (MOFs) materials have aroused growing attention in the domain of photocatalysis owing to their unique properties, especially in the removal of contaminants. Herein, a novel carbon quantum dots (CQDs)-decorated MOF (ZIF-8) composite with excellent photocatalytic activity was prepared by a facile impregnation approach. The well-designed core–shell structure endows the composite with a remarkable absorptive capability and enhanced visible light response. CQDs@ZIF-8 composite exhibited superior photocatalytic removal efficiency of methylene blue, and the reaction rate constant was 6 times that of ZIF-8. The enhancement of the photocatalytic efficiency was attributed to the highly effective separation and transport of photo-induced charge, abundant reactive sites, and improved visible light response ability. Meanwhile, the CQDs@ZIF-8 photocatalyst possesses dependable structural and capability stability in the reuse of pollutant removal. This study would offer an underlying insight into the innovative design of high performance photocatalyst in environmental remediation.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1

    Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling-an overview. RSC Adv 2:6380–6388

    CAS  Google Scholar 

  2. 2

    Nakata K, Ochiai T, Murakami T, Fujishima A (2012) Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim Acta 84:103–111

    CAS  Google Scholar 

  3. 3

    Boyjoo Y, Sun HQ, Liu J, Pareek VK, Wang SB (2017) A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J 310:537–559

    CAS  Google Scholar 

  4. 4

    Wang WJ, Li GY, Xia DH, An TC, Zhao HJ, Wong PK (2017) Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ Sci Nano 4:782–799

    CAS  Google Scholar 

  5. 5

    Dariani RS, Esmaeili A, Mortezaali A, Dehghanpour S (2016) Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127:7143–7154

    CAS  Google Scholar 

  6. 6

    Li WZ, Li J, Wang X, Chen QY (2012) Preparation and water-splitting photocatalytic behavior of S-doped WO3. Appl Surf Sci 263:157–162

    CAS  Google Scholar 

  7. 7

    Cai R, Wu JG, Sun L, Liu YJ, Fang T, Zhu S, Li SY, Wang Y, Guo LF, Zhao CE, Wei A (2016) 3D graphene/ZnO composite with enhanced photocatalytic activity. Mater Design 90:839–844

    CAS  Google Scholar 

  8. 8

    Yu J, Kudo A (2006) Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv Funct Mater 16:2163–2169

    CAS  Google Scholar 

  9. 9

    Si YH, Chen WM, Shang SK, Xia Y, Zeng XR, Zhou J, Li YY (2020) g-C3N4/Pt/BiVO4 nanocomposites for highly efficient visible-light photocatalytic removal of contaminants and hydrogen generation. Nanotechnology 31:125706

    Google Scholar 

  10. 10

    Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    CAS  Google Scholar 

  11. 11

    Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Google Scholar 

  12. 12

    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    CAS  Google Scholar 

  13. 13

    Zhou JW, Yu XS, Fan XX, Wang XJ, Li HW, Zhang YY, Li W, Zheng J, Wang B, Li XG (2015) The impact of the particle size of a metal-organic framework for sulfur storage in Li–S batteries. J Mater Chem A 3:8272–8275

    CAS  Google Scholar 

  14. 14

    Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weselinski LJ, Solovyeva V, Adil K, Spanopoulos I, Trikalitis PN, Emwas AH, Eddaoudi M (2015) MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137:13308–13318

    CAS  Google Scholar 

  15. 15

    Song GQ, Wang ZQ, Wang L, Li GR, Huang MJ, Yin FX (2014) Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chinese J Catal 35:185–195

    CAS  Google Scholar 

  16. 16

    Li T, Liu L, Zhang ZM, Han ZB (2020) Preparation of nanofibrous metal-organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution. Sep Purif Technol 237:116360

    Google Scholar 

  17. 17

    Fang XZ, Shang QC, Wang Y, Jiao L, Yao T, Li YF, Zhang Q, Luo Y, Jiang HL (2018) Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater 30:1705112

    Google Scholar 

  18. 18

    Xiao JD, Han L, Luo J, Yu SH, Jiang HL (2018) Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angew Chem Int Ed 57:1103–1107

    CAS  Google Scholar 

  19. 19

    Chen YZ, Gu B, Uchida T, Liu J, Liu X, Ye BJ, Xu Q, Jiang HL (2019) Location determination of metal nanoparticles relative to a metal-organic framework. Nat Commun 10:3462

    Google Scholar 

  20. 20

    Li D, Yu SH, Jiang HL (2018) From UV to near-infrared light-responsive metal-organic framework composites: plasmon and upconversion enhanced photocatalysis. Adv Mater 30:1707377

    Google Scholar 

  21. 21

    Wu RF, Fan T, Chen JY, Li YW (2019) Synthetic factors affecting the scalable production of zeolitic imidazolate frameworks. ACS Sustain Chem Eng 7:3632–3646

    CAS  Google Scholar 

  22. 22

    Jing HP, Wang CC, Zhang YW, Wang P, Li R (2014) Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv 4:54454–54462

    CAS  Google Scholar 

  23. 23

    Aguilera-Sigalat J, Bradshaw D (2016) Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordin Chem Rev 307:267–291

    CAS  Google Scholar 

  24. 24

    Su Y, Zhang Z, Liu H, Wang Y (2017) Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl Catal B Environ 200:448–457

    CAS  Google Scholar 

  25. 25

    Zhang GH, Hou SC, Zhang H, Zeng W, Yan FL, Li CC, Duan HG (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 27:2400–2405

    CAS  Google Scholar 

  26. 26

    Wan SP, Ou M, Zhong Q, Wang XM (2019) Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem Eng J 358:1287–1295

    CAS  Google Scholar 

  27. 27

    Hao XQ, Jin ZL, Yang H, Lu GX, Bi YP (2017) Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl Catal B Environ 210:45–56

    CAS  Google Scholar 

  28. 28

    Zuo PL, Lu XH, Sun ZG, Guo YH, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    CAS  Google Scholar 

  29. 29

    Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    CAS  Google Scholar 

  30. 30

    Dong YQ, Cai JH, You X, Chi YW (2015) Sensing applications of luminescent carbon based dots. Analyst 140:7468–7486

    CAS  Google Scholar 

  31. 31

    Bhattacharya S, Phatake RS, Nabha Barnea S, Zerby N, Zhu JJ, Shikler R, Lemcoff NG, Jelinek R (2019) Fluorescent self-healing carbon dot/polymer gels. ACS Nano 13:1433–1442

    CAS  Google Scholar 

  32. 32

    Arumugham T, Alagumuthu M, Amimodu RG, Munusamy S, Iyer SK (2020) A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications. Sustain Mater Technol 23:e00138

    Google Scholar 

  33. 33

    Ali H, Ghosh S, Jana NR (2020) Fluorescent carbon dots as intracellular imaging probes. Wires Nanomed Nanobi. https://doi.org/10.1002/wnan.1617

    Article  Google Scholar 

  34. 34

    Li HT, Liu RH, Lian SY, Liu Y, Huang H, Kang ZH (2013) Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale 5:3289–3297

    CAS  Google Scholar 

  35. 35

    Fernando KA, Sahu S, Liu Y, Lewis WK, Guliants EA, Jafariyan A, Wang P, Bunker CE, Sun YP (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7:8363–8376

    CAS  Google Scholar 

  36. 36

    Di J, Xia JX, Ge YP, Li HP, Ji HY, Xu H, Zhang Q, Li HM, Li MN (2015) Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl Catal B Environ 168–169:51–61

    Google Scholar 

  37. 37

    Zhang X, Wang F, Huang H, Li HT, Han X, Liu Y, Kang ZH (2013) Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light†. Nanoscale 5:2274–2278

    CAS  Google Scholar 

  38. 38

    Wang R, Lu KQ, Zhang F, Tang ZR, Xu YJ (2018) 3D carbon quantum dots/graphene aerogel as a metal-free catalyst for enhanced photosensitization efficiency. Appl Catal B Environ 233:11–18

    CAS  Google Scholar 

  39. 39

    Liu Q, Chen TX, Guo YR, Zhang ZG, Fang XM (2016) Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl Catal B Environ 193:248–258

    CAS  Google Scholar 

  40. 40

    Wu XQ, Zhao J, Wang LP, Han MM, Zhang ML, Wang HB, Huang H, Liu Y, Kang ZH (2017) Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl Catal B Environ 206:501–509

    CAS  Google Scholar 

  41. 41

    Wei XY, Wang YW, Huang Y, Fan CM (2019) Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO. J Alloy Compd 802:467–476

    CAS  Google Scholar 

  42. 42

    Wang L, Lv T, Ruan FP, Deng DG, Xu SQ (2014) Synthesis of photoluminescent carbon nanoparticles by hydrothermal method. J Lumin 35:706–709

    CAS  Google Scholar 

  43. 43

    Sánchez-Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, Téllez C, Coronas J (2016) Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J Membr Sci 515:45–53

    Google Scholar 

  44. 44

    Si YH, Li YY, Xia Y, Shang SK, Xiong XB, Zeng XR, Zhou J (2018) Fabrication of novel ZIF-8@BiVO4 composite with enhanced photocatalytic performance. Crystals 8:432

    Google Scholar 

  45. 45

    Tang J, Kong B, Wu H, Xu M, Wang YC, Wang YL, Zhao DY, Zheng GF (2013) Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv Mater 25:6569–6574

    CAS  Google Scholar 

  46. 46

    Zhou L, Li N, Owens G, Chen ZL (2019) Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chem Eng J 362:628–637

    CAS  Google Scholar 

  47. 47

    Jian MP, Liu B, Zhang GS, Liu RP, Zhang XW (2015) Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloid Surf A 465:67–76

    CAS  Google Scholar 

  48. 48

    Chin M, Cisneros C, Araiza SM, Vargas KM, Ishihara KM, Tian F (2018) Rhodamine B degradation by nanosized zeolitic imidazolate framework-8 (ZIF-8). RSC Adv 8:26987–26997

    CAS  Google Scholar 

  49. 49

    Wang F, Liu ZS, Yang H, Tan YX, Zhang J (2011) Hybrid zeolitic imidazolate frameworks with catalytically active TO4 building blocks. Angew Chem Int Ed 50:450–453

    CAS  Google Scholar 

  50. 50

    Yuan JL, Liu X, Tang YH, Zeng YX, Wang LL, Zhang SQ, Cai T, Liu YT, Luo SL, Pei Y, Liu CB (2018) Positioning cyanamide defects in g-C3N4: engineering energy levels and active sites for superior photocatalytic hydrogen evolution. Appl Catal B Environ 237:24–31

    CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunhui Si.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Si, Y., Li, X., Yang, G. et al. Fabrication of a novel core–shell CQDs@ZIF-8 composite with enhanced photocatalytic activity. J Mater Sci 55, 13049–13061 (2020). https://doi.org/10.1007/s10853-020-04909-8

Download citation