3D porous oxygen-enriched graphene hydrogels with well-balanced volumetric and gravimetric performance for symmetric supercapacitors


3D porous oxygen-enriched graphene hydrogels (POGHs) have been successfully prepared via a one-step hydrothermal approach with graphene oxide and a tiny amount of acidic glutamic acid which serves as carboxyl source, reductant, nitrogen dopant, as well as pore size and density regulator at the same time. Owing to the high content of oxygen-containing functional groups and high density, the repaired graphene sheet structure by nitrogen doping, 3D interconnected porous networks and large specific surface areas, the as-obtained POGHs binder-free electrodes exhibit excellent electrochemical properties in 6 M KOH electrolyte. In particular, the POGH-30-based symmetric supercapacitor displays well-balanced volumetric capacitance (241.1 F cm−3) and gravimetric capacitance (256.5 F g−1) at 0.5 A g−1, and this capacitance can be maintained for 91.8% even at 10 A g−1. Moreover, the POGH-30 electrode also delivers high gravimetric and volumetric specific energy densities of 8.8 Wh kg−1 and 8.3 Wh L−1 at 0.5 A g−1, and excellent cycling stability of 100.7% retention after 10000 cycles at 10 A g−1. These results denote that POGH-30 is expected to be used as electrode material for high-performance supercapacitors.

This is a preview of subscription content, log in to check access.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 2
Figure 6


  1. 1

    Zhong WW, Huang JD, Liang SQ et al (2020) New prelithiated V2O5 superstructure for lithium-ion batteries with long cycle life and high power. ACS Energy Lett 5:31–38

    CAS  Article  Google Scholar 

  2. 2

    Meng LX, Rao DW, Tian W et al (2018) Simultaneous manipulation of o-doping and metal vacancy in atomically thin Zn10In16S34 nanosheet arrays toward improved photoelectrochemical performance. Angew Chem Int Ed 57:16882–16887

    CAS  Article  Google Scholar 

  3. 3

    Zhong WW, Shen SJ, Feng SS et al (2018) Facile fabrication of alveolate Cu2xSe microsheets as a new visible-light photocatalyst for discoloration of rhodamine B. CrystEngComm 20:7851–7856

    CAS  Article  Google Scholar 

  4. 4

    Jiang L, Wu ZY, Wang YN et al (2019) Ultrafast zinc-ion diffusion ability observed in 6.0-nanometer spinel nanodots. ACS Nano 13:10376–10385

    CAS  Article  Google Scholar 

  5. 5

    Wu ZY, Jiang L, Tian WC et al (2019) Novel sub-5 nm layered niobium phosphate nanosheets for high-voltage, cation-intercalation typed electrochemical energy storage in wearable pseudocapacitors. Adv Energy Mater 9:1900111

    Article  CAS  Google Scholar 

  6. 6

    Yang PY, Wu ZY, Jiang YC et al (2018) Fractal (NixCo1x)9Se8 nanodendrite arrays with highly exposed (011) surface for wearable, all-solid-state supercapacitor. Adv Energy Mater 8:1801392

    Article  CAS  Google Scholar 

  7. 7

    Pan ZC, Jiang YC, Yang PY et al (2018) In-situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 12:2968–2979

    CAS  Article  Google Scholar 

  8. 8

    Wang Q, Yan J, Fan ZJ (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729–762

    CAS  Article  Google Scholar 

  9. 9

    Jin HL, Li J, Yuan YF et al (2018) Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv Energy Mater 8:1801007

    Article  CAS  Google Scholar 

  10. 10

    Slonopas A, Ryan H, Norris P (2019) Ultrahigh energy density CH3NH3PbI3 perovskite based supercapacitor with fast discharge. Electrochim Acta 307:334–340

    CAS  Article  Google Scholar 

  11. 11

    Zhang SW, Yin BS, Liu XX et al (2019) A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 59:41–49

    CAS  Article  Google Scholar 

  12. 12

    Tian YP, Que WX, Luo YY et al (2019) Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J Mater Chem A 7:5416–5425

    CAS  Article  Google Scholar 

  13. 13

    Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    CAS  Article  Google Scholar 

  14. 14

    Huang L, Yao B, Sun JY et al (2017) Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. J Mater Chem A 5:2897–2903

    Article  CAS  Google Scholar 

  15. 15

    Xu SS, Li XL, Yang Z et al (2016) Nanofoaming to boost the electrochemical performance of Ni@Ni(OH)2 nanowires for ultrahigh volumetric supercapacitors. ACS Appl Mater Interfaces 8:27868–27876

    CAS  Article  Google Scholar 

  16. 16

    Yan J, Ren CE, Maleski K et al (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264

    Article  CAS  Google Scholar 

  17. 17

    Zhu L, Liu Y, Su C et al (2016) Perovskite SrCo0.9Nb0.1O3δ as an anion-intercalated electrode material for supercapacitors with ultrahigh volumetric energy density. Angew Chem 128:9728–9731

    Article  Google Scholar 

  18. 18

    Wang ZH, Tammela P, Zhang P et al (2014) High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. J Mater Chem A 2:16761–16769

    CAS  Article  Google Scholar 

  19. 19

    Huang AQ, He YZ, Zhou YZ et al (2019) A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J Mater Sci 54:949–973. https://doi.org/10.1007/s10853-018-2961-5

    CAS  Article  Google Scholar 

  20. 20

    Zhang CF, Nicolosi V (2019) Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater 16:102–125

    Article  Google Scholar 

  21. 21

    Nan HS, Hu XY, Tian HW (2019) Recent advances in perovskite oxides for anion-intercalation supercapacitor: a review. Mater Sci Semicond Process 94:35–50

    CAS  Article  Google Scholar 

  22. 22

    Liu PB, Yan J, Guang ZX et al (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130

    CAS  Article  Google Scholar 

  23. 23

    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    CAS  Article  Google Scholar 

  24. 24

    Borenstein A, Hanna O, Attias R et al (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    CAS  Article  Google Scholar 

  25. 25

    Liu LL, Niu ZQ, Chen J (2016) Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev 45:4340–4363

    CAS  Article  Google Scholar 

  26. 26

    Yao L, Wu Q, Zhang PX et al (2018) Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv Mater 30:1706054

    Article  CAS  Google Scholar 

  27. 27

    Yan LJ, Li D, Yan TT et al (2018) N, P, S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors. ACS Sustain Chem Eng 6:5265–5272

    CAS  Article  Google Scholar 

  28. 28

    Ma HY, Kong DB, Xu Y et al (2017) Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13:1701026

    Article  CAS  Google Scholar 

  29. 29

    Wang YF, Yang XW, Pandolfo AG et al (2016) High-rate and high-volumetric capacitance of compact graphene-polyaniline hydrogel electrodes. Adv Energy Mater 6:1600185

    Article  CAS  Google Scholar 

  30. 30

    Li JW, Li XF, Xiong DB et al (2019) Enhanced capacitance of boron-doped graphene aerogels for aqueous symmetric supercapacitors. Appl Surf Sci 475:285–293

    CAS  Article  Google Scholar 

  31. 31

    Peng X, Cao HL, Qin ZH et al (2019) A simple and scalable strategy for preparation of high density graphene for high volumetric performance supercapacitors. Electrochim Acta 305:56–63

    CAS  Article  Google Scholar 

  32. 32

    Zuliani JE, Tong ST, Jia CQ et al (2018) Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J Power Sources 395:271–279

    CAS  Article  Google Scholar 

  33. 33

    Yang W, Yang W, Kong LN et al (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127:557–567

    CAS  Article  Google Scholar 

  34. 34

    Chen XA, Chen XH, Xu X et al (2014) Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale 6:13740–13747

    CAS  Article  Google Scholar 

  35. 35

    Wang X, Sun G, Routh P et al (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098

    CAS  Article  Google Scholar 

  36. 36

    Dreyer DR, Park SJ, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    CAS  Article  Google Scholar 

  37. 37

    Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    CAS  Article  Google Scholar 

  38. 38

    Jang GG, Song B, Moon KS et al (2017) Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance. Carbon 119:296–304

    CAS  Article  Google Scholar 

  39. 39

    Zhu G, Ma L, Lv H et al (2017) Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale 9:1237–1243

    CAS  Article  Google Scholar 

  40. 40

    Tan YY, Wu DL, Wang T et al (2018) Facile synthesis of functionalized graphene hydrogel for high performance supercapacitor with high volumetric capacitance and ultralong cycling stability. Appl Surf Sci 455:683–695

    CAS  Article  Google Scholar 

  41. 41

    Zhang XF, Wang DP, Yang M et al (2018) Pyridine-enriched graphene sheets for high volumetric performance supercapacitors. J Solid State Electrochem 22:1921–1931

    CAS  Article  Google Scholar 

  42. 42

    Lai LF, Yang HP, Wang L et al (2012) Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6:5941–5951

    CAS  Article  Google Scholar 

  43. 43

    Zhou W, Lei SJ, Sun SQ et al (2018) From weed to multi-heteroatom-doped honeycomb-like porous carbon for advanced supercapacitors: a gelatinization-controlled one-step carbonization. J Power Sources 402:203–212

    CAS  Article  Google Scholar 

  44. 44

    Wu ZS, Parvez K, Winter A et al (2014) Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv Mater 26:4552–4558

    CAS  Article  Google Scholar 

  45. 45

    Wen YY, Huang CC, Wang LZ et al (2014) Heteroatom-doped graphene for electrochemical energy storage. Chin Sci Bull 59:2102–2121

    CAS  Article  Google Scholar 

  46. 46

    Zhang Y, Wen GW, Fan S et al (2019) Alcoholic hydroxyl functionalized partially reduced graphene oxides for symmetric supercapacitors with long-term cycle stability. Electrochim Acta 313:59–69

    CAS  Article  Google Scholar 

  47. 47

    Liu YP, Shen SJ, Zhang JT et al (2019) Cu2xSe/CdS composite photocatalyst with enhanced visible light photocatalysis activity. Appl Surf Sci 478:762–769

    CAS  Article  Google Scholar 

  48. 48

    Zhong WW, Shen SJ, He M et al (2019) The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution. Appl Catal B 258:117967

    CAS  Article  Google Scholar 

  49. 49

    Wan WC, Zhang F, Yu S et al (2016) Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. New J Chem 40:3040–3046

    CAS  Article  Google Scholar 

  50. 50

    Pham VH, Dickerson JH (2016) Reduced graphene oxide hydrogels deposited in nickel foam for supercapacitor applications: toward high volumetric capacitance. J Phys Chem C 120:5353–5360

    CAS  Article  Google Scholar 

  51. 51

    Chen SB, Gao WS, Chao YZ et al (2018) Low temperature preparation of pore structure controllable graphene for high volumetric performance supercapacitors. Electrochim Acta 273:181–190

    CAS  Article  Google Scholar 

  52. 52

    Hu XJ, Bai DC, Wu YQ et al (2017) A facile synthesis of reduced holey graphene oxide for supercapacitors. Chem Commun 53:13225–13228

    CAS  Article  Google Scholar 

  53. 53

    Chen LF, Zhang XD, Liang HW et al (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:7092–7102

    CAS  Article  Google Scholar 

  54. 54

    Zhang CF, Hatzell KB, Boota M et al (2014) Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon 77:155–164

    CAS  Article  Google Scholar 

  55. 55

    Liang QH, Ye L, Huang ZH et al (2014) A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6:13831–13837

    CAS  Article  Google Scholar 

  56. 56

    Xiao N, Tan HT, Zhu JX et al (2013) High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid. ACS Appl Mater Interfaces 5:9656–9662

    CAS  Article  Google Scholar 

  57. 57

    Zhang WL, Lin HB, Lin ZQ et al (2015) (2015) 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. Chemsuschem 8:2114–2122

    CAS  Article  Google Scholar 

  58. 58

    Qin TF, Wan ZY, Wang ZL et al (2016) 3D flexible O/N Co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances. J Power Sources 336:455–464

    CAS  Article  Google Scholar 

  59. 59

    Lei ZB, Christov N, Zhao XS (2011) Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ Sci 4:1866–1873

    CAS  Article  Google Scholar 

  60. 60

    Gao Y, Zhou YS, Qian M et al (2013) Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51:52–58

    CAS  Article  Google Scholar 

  61. 61

    Li M, Xue JM (2014) Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C 118:2507–2517

    CAS  Article  Google Scholar 

  62. 62

    Yu ZY, Chen LF, Song LT et al (2015) Free-standing boron and oxygen co-doped carbon nanofiber films for large volumetric capacitance and high rate capability supercapacitors. Nano Energy 15:235–243

    CAS  Article  Google Scholar 

  63. 63

    Cao FR, Meng LX, Wang M et al (2019) Gradient energy band driven high-performance self-powered perovskite/CdS photodetector. Adv Mater 31:1806725

    Article  CAS  Google Scholar 

  64. 64

    Zhong WW, Lin ZP, Feng SS et al (2019) Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. Nanoscale 11:4407–4413

    CAS  Article  Google Scholar 

  65. 65

    Jiang YC, Song Y, Li YM et al (2017) Charge transfer in ultrafine ldh nanosheets/graphene interface with superior capacitive energy storage performance. ACS Appl Mater Interfaces 9:37645–37654

    CAS  Article  Google Scholar 

Download references


We gratefully acknowledge the financial support from the Research and Development Project of Basic Research Business Fees of Provincial Higher Education Institutions in Heilongjiang Province in 2018 (Special Subject of Plant Food Processing Technology, Nos. YSTSXK201870 and YSTSXK201871), Qiqihar University College Students Innovation and Entrepreneurship Training Program (No. 201910232049), the National Natural Science Foundation of China (No. 51303087), Natural Science Foundation of Heilongjiang Province (No. QC2015057), and the Fundamental Research Funds in Heilongjiang Provincial Universities (No. 135309110).

Author information



Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict to interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fan, S., Li, S. et al. 3D porous oxygen-enriched graphene hydrogels with well-balanced volumetric and gravimetric performance for symmetric supercapacitors. J Mater Sci 55, 12214–12231 (2020). https://doi.org/10.1007/s10853-020-04881-3

Download citation