Oxidation mechanism of molten Al–5Mg–2Si–Mn alloy

Abstract

The oxidation mechanism for the molten surface of Al–5Mg–2Si–Mn alloy was studied. The results show that the oxide layer contains MgO, Al2O3, MgAl2O4, BeO and SiO2, and it is composed of a composite inner layer (MgO/Al2O3/MgAl2O4/BeO/SiO2) and an outer layer of MgO. An oxidation mechanism was proposed to describe the four oxidation stages which included oxidation adsorption, accelerated oxidation, transitional oxidation and stable oxidation. The effects of oxidation time and oxidation temperature on the thickness of oxide layer were discussed. Thermodynamic calculations were used to confirm the feasibility of oxidation process, indicating that MgO was the most stable oxide in the experimental temperature range. Further, the stable regions of MgO and MgAl2O4 as functions of magnesium content and oxidation temperature were calculated. In the stable oxidation stage, the diffusion activation energy of Mg atoms in MgO was fitted according to the outer layer thicknesses, and the kinetic equation of the outer layer thickness with the oxidation time and oxidation temperature was established. From the perspective of thermodynamics and kinetics, the oxidation products of the alloy during the melting process and the effects of oxidation time and temperature on the oxide layer were analyzed.

Graphic abstract

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. 1

    Engler O, Hirsch J (2002) Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review. Mater Sci Eng A 336:249–262

    Article  Google Scholar 

  2. 2

    Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A, Vieregge A (2000) Recent development in aluminum alloys for the automotive industry. Mater Sci Eng A 280:37–49. https://doi.org/10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  3. 3

    Musfirah AH, Jaharah AG (2012) Magnesium and aluminum alloys in automotive industry. J Appl Sci Res 8(9):4865–4875

    CAS  Google Scholar 

  4. 4

    Cui J, Roven HJ (2010) Recycling of automotive aluminum. Trans Nonferrous Met Soc China 20(11):2057–2063. https://doi.org/10.1016/s1003-6326(09)60417-9

    CAS  Article  Google Scholar 

  5. 5

    Tisza M, Czinege I (2018) Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int J Lightweight Mater and Manuf 1(4):229–238. https://doi.org/10.1016/j.ijlmm.2018.09.001

    Article  Google Scholar 

  6. 6

    Trudonoshyn O, Prach O (2019) Multistep nucleation and multi-modification effect of Sc in hypoeutectic Al–Mg–Si alloys. Heliyon 5(2):1–12

    Article  Google Scholar 

  7. 7

    Burger GB, Gupta AK, Jeffrey PW, Lloyd DJ (1995) Microstructural control of aluminum sheet used in automotive applications. Mater Charact 35:23–39. https://doi.org/10.1016/1044-5803(95)00065-8

    CAS  Article  Google Scholar 

  8. 8

    Ji S, Yan F, Fan Z (2014) Development of a high strength Al–Mg2Si–Mg–Zn based alloy for high pressure die casting. Mater Sci Eng A 626:165–174. https://doi.org/10.1016/j.msea.2014.12.019

    CAS  Article  Google Scholar 

  9. 9

    Mondolfo LF (1976) Aluminum alloys: structure and properties. Butterworth Heinemann. https://doi.org/10.1016/C2013-0-04239-9

    Article  Google Scholar 

  10. 10

    Casarotto F, Franke AJ, Franke R (2012) High-pressure die-cast (HPDC) aluminium alloys for automotive applications. In: Advanced materials in automotive engineering. Woodhead Publishing, London, pp 109–149. https://doi.org/10.1533/9780857095466.109

  11. 11

    Hirsch J (2014) Recent development in aluminum for automotive applications. Trans Nonferrous Met Soc China 24(7):1995–2002. https://doi.org/10.1016/s1003-6326(14)63305-7

    CAS  Article  Google Scholar 

  12. 12

    Lide DR (1914) CRC handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  13. 13

    Tekumalla S, Nandigam Y, Bibhanshu N, Rajashekara S, Chen Y, Suwas S, Gupta M (2018) A strong and deformable in situ magnesium nanocomposite igniting above 1000 °C. Sci rep 8:7038

    Article  Google Scholar 

  14. 14

    Murphy AJ (1954) Non-ferrous foundry metallurgy. Pergamon Press Ltd, London, p 25

    Google Scholar 

  15. 15

    Haginoya I, Fukusako T (1983) Oxidation of molten Al–Mg alloys. Trans Jpn Inst Met 24:613–619. https://doi.org/10.2320/matertrans1960.24.613

    Article  Google Scholar 

  16. 16

    Venugopalan H, DebRoy T (1996) Growth stage kinetics in the synthesis of Al2O3/Al composites by directed oxidation of Al–Mg and Al–Mg–Si alloys. J Eur Ceram Soc 16:1351–1363. https://doi.org/10.1016/0955-2219(96)00068-4

    CAS  Article  Google Scholar 

  17. 17

    Tenório JAS, Espinosa DCR (2000) High-temperature oxidation of Al–Mg alloys. Oxid Met 53:361–373. https://doi.org/10.1023/A:1004549522648

    Article  Google Scholar 

  18. 18

    Surla K, Valdivieso F, Pijolat M, Soustelle M, Prin M (2001) Kinetic study of the oxidation by oxygen of liquid Al–Mg 5% alloys. Solid State Ion 143:355–365. https://doi.org/10.1016/S0167-2738(01)00861-X

    CAS  Article  Google Scholar 

  19. 19

    Lea C, Molinari C (1984) Magnesium diffusion, surface segregation and oxidation in Al–Mg alloys. J Mater Sci 19:2336–2352. https://doi.org/10.1007/BF01058110

    CAS  Article  Google Scholar 

  20. 20

    Kanti AD, Mukhopadhyay A, Sen S, Puri IK (2004) Numerical simulation of early stages of oxide formation in molten aluminium-magnesium alloys in a reverberatory furnace. Model Simul Mater Sci Eng 12:389–405. https://doi.org/10.1088/0965-0393/12/3/003

    CAS  Article  Google Scholar 

  21. 21

    Lea C, Ball J (1984) The oxidation of rolled and heat-treated Al–Mg alloys. Appl Surf Sci 17:344–362. https://doi.org/10.1016/0378-5963(84)90023-0

    CAS  Article  Google Scholar 

  22. 22

    Ritchie IM, Sanders JV, Weickhardt PL (1971) Oxidation of a dilute aluminum magnesium alloy. Oxid Met 3:91–101. https://doi.org/10.1007/BF00604741

    CAS  Article  Google Scholar 

  23. 23

    El-Sayed MA (2016) The behaviour of bifilm defects in cast Al–7Si–Mg alloy. PLoS ONE 11(8):1–15. https://doi.org/10.1371/journal.pone.0160633

    CAS  Article  Google Scholar 

  24. 24

    Panda E, Jeurgens LPH, Mittemeijer EJ (2009) Effect of in vacuo surface pre-treatment on the growth kinetics and chemical constitution of ultra-thin oxide films on Al–Mg alloy substrates. Surf Sci 604(5–6):588–595

    Google Scholar 

  25. 25

    Hu Z, Zhang QX, Gao YX (1990) Techniques and quality controlling of aluminum and magnesium alloys. The Aviation Industry Press, Beijing, p 66

    Google Scholar 

  26. 26

    Wikle KG (1978) Improving aluminum castings with beryllium. AFS Trans 119:513–518

    Google Scholar 

  27. 27

    Foerster G (1998) A new approach to magnesium die casting. Adv Mater Processes 154(4):79–81

    CAS  Google Scholar 

  28. 28

    Salas O, Ni H, Jayaram V, Vlach KC, Levi CG, Mehrabian R (1991) Nucleation and growth of Al2O3/metal composites by oxidation of aluminum alloys. J Mater Res 6:1964–1981. https://doi.org/10.1557/JMR.1991.1964

    CAS  Article  Google Scholar 

  29. 29

    Nagelberg AS (1992) Observations on the role of Mg and Si in the directed oxidation Al–Mg–Si alloys. J Mater Res 7(2):265–268

    CAS  Article  Google Scholar 

  30. 30

    Levi CG, Abbaschian GJ, Mehrabian R (1978) Interface interactions during fabrication of aluminum alloy-alumina fiber composites. Metall Mater Trans A 9(5):697–711

    Article  Google Scholar 

  31. 31

    Fishkis M (1991) Interfaces and fracture surfaces in Saffil/Al–Mg–Cu metal-matrix composites. J Mater Sci 26(10):2651–2661. https://doi.org/10.1007/BF02387733

    CAS  Article  Google Scholar 

  32. 32

    Froumin N, Piness M, Barzilai S, AizenshteinI M, Frage N (2012) Interfacial interaction between quasi-binary oxides (MgAl2O4, and Y3Al5O12) and liquid aluminum. J Mater Sci 47(24):8450–8453. https://doi.org/10.1007/s10853-012-6774-7

    CAS  Article  Google Scholar 

  33. 33

    Czerwinski F (2002) The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Mater 50:2639–2654

    CAS  Article  Google Scholar 

  34. 34

    Raiszadeh R, Griffiths WD (2006) A method to study the history of a double oxide film defect in liquid aluminum alloys. Metall Mater Trans B 37:865–871. https://doi.org/10.1007/BF02735007

    Article  Google Scholar 

  35. 35

    Birks N, Meier GH, Pettit FS (2006) Introduction to the High Temperature Oxidation of Metals. Cambridge University Press, Cambridge. https://doi.org/10.2277/0521480426

    Google Scholar 

  36. 36

    Alper AM, Mcnally RN, Ribbe PH, Doman RC (1962) The system MgO–MgAl2O4. J Am Ceram Soc 45:263–268. https://doi.org/10.1111/j.1151-2916.1962.tb11141.x

    CAS  Article  Google Scholar 

  37. 37

    Jacob KT, Jayanevan KP, Waseda Y (1998) Electrochemical determination of the Gibbs energy of formation of MgAl2O4. J Am Ceram Soc 81(1):209–212

    CAS  Article  Google Scholar 

  38. 38

    Chase MW (1998) NIST-JANAF thermochemical tables. American Chemical Society & American Institute of Physics, Maryland

    Google Scholar 

  39. 39

    Valdez M, Prapakorn K, Cramb AW, Sridhar S (2002) Dissolution of alumina particles in CaO–Al2O3–SiO2–MgO slags. Ironmaking Steelmaking 29(1):47–52. https://doi.org/10.1179/03019230222500

    CAS  Article  Google Scholar 

  40. 40

    Murray JL, McAlister AJ (1984) The Al–Si (aluminum–silicon) system. Alloy Phase Diagrams, Bull. https://doi.org/10.1007/BF02868729

    Google Scholar 

  41. 41

    Bhatt YJ, Garg SP (1976) Thermodynamic study of liquid aluminum-magnesium alloys by vapor pressure measurements. Metall Mater Trans B 7:271–275. https://doi.org/10.1007/BF02654926

    Article  Google Scholar 

  42. 42

    Saunders N (1990) A review and thermodynamic assessment of the Al–Mg and Mg–Li systems. Calphad 14(1):61–70. https://doi.org/10.1016/0364-5916(90)90040-7

    CAS  Article  Google Scholar 

  43. 43

    Bloch J, Bottomley DJ, Mihaychuk JG, Driel VHM, Timsit RS (1995) Magnesium surface segregation and its effect on the oxidation rate of the (111) surface of A1–1.45at%Mg. Surf Sci 322:168–176. https://doi.org/10.1016/0039-6028(95)90027-6

    CAS  Article  Google Scholar 

  44. 44

    Tiwari BL (1987) Thermodynamic properties of liquid Al–Mg alloys measured by the Emf method. Metall Mater Trans A 18:1645–1651. https://doi.org/10.1007/BF02646148

    Article  Google Scholar 

  45. 45

    Wakefield GR, Sharp RM (1991) The composition of oxides formed on Al–Mg alloys. Appl Surf Sci 51:95–102. https://doi.org/10.1016/0169-4332(91)90065-R

    CAS  Article  Google Scholar 

  46. 46

    Jin F, Luo Q, Zhou B, Li Q (2012) Modeling investigation of the oxidation kinetics of copper and aluminum alloys. Adv Metall Min Eng 402:17–21. https://doi.org/10.4028/www.scientific.net/AMR.402.17

    CAS  Article  Google Scholar 

  47. 47

    Chou KC (2006) A kinetic model for oxidation of Si–Al–O–N materials. J Am Ceram Soc 89:1568–1576. https://doi.org/10.1111/j.1551-2916.2006.00959.x

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The National Key R&D Program (No.2016YFB0101704) supported by the Ministry of Science and Technology of China is acknowledged. This work was co-funded by the National Natural Science Foundation of China (No. 51301107, 51601111). D. Li acknowledges the financial support received from Shanghai Jiao Tong University through SMC Young Scholar Program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dejiang Li or Xiaoqin Zeng.

Ethics declarations

Conflict of interest statement

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1135 kb)

Supplementary material 2 (XLSX 408 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Li, D., Ying, T. et al. Oxidation mechanism of molten Al–5Mg–2Si–Mn alloy. J Mater Sci 55, 12554–12567 (2020). https://doi.org/10.1007/s10853-020-04874-2

Download citation