Effects of doping and biaxial strain on the electronic properties of GaN/graphene/WS2 trilayer vdW heterostructure

Abstract

Based on the calculation using first-principles, we discussed adjustment for electronic properties of the GaN/graphene/WS2 trilayer vdW heterostructure by doping and biaxial strain. Mg or Se doping can regulate the band gap of the GaN/graphene/WS2 trilayer vdW heterostructure and achieve p-type or n-type dopant in graphene and the trilayer heterostructure system. Band gap decreases with the increase in positive strain, and a p-type Schottky barrier is always maintained. As the negative strain increases, the band gap reaches its maximum at ε = − 3% and then gradually decreases. And after |ε| ≥ | − 5|%, it changes to an indirect band gap. When |ε| ≥ | − 7|%, the Schottky contact type changes from p-type to n-type. Electrons are transferred from GaN layer to graphene and WS2 layer, and transfer increases with the increase in strain from negative to positive. More electrons are transferred to WS2 with positive strain, and more electrons are transferred to graphene with negative strain. The results will provide valuable information for the design of trilayer Schottky devices.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Change history

  • 24 June 2020

    In the original article, Fig. 3 was incorrect. The original article has been updated to display the corrected figure.

References

  1. 1

    Novoselov KS, Mishchenko A, Carvalho A, Neto AHC (2016) 2D materials and van der Waals heterostructures. Science 353:6298

    Article  CAS  Google Scholar 

  2. 2

    Torelli D, Olsen T (2018) Calculating critical temperatures for ferromagnetic order in two-dimensional materials. 2D Mater 6:015028

    Article  CAS  Google Scholar 

  3. 3

    Sanders N, Bayerl D, Shi G, Mengle KA, Kioupakis E (2017) Electronic and optical properties of two-dimensional GaN from first-principles. Nano Lett 17:7345–7349

    CAS  Article  Google Scholar 

  4. 4

    Pasquier D, Yazyev OV (2019) Crystal field, ligand field, and interorbital effects in two-dimensional transition metal dichalcogenides across the periodic table. 2D Mater 6:025015

    CAS  Article  Google Scholar 

  5. 5

    Liu GB, Xiao D, Yao Y, Xu X, Yao W (2015) Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev 44:2643–2663

    CAS  Article  Google Scholar 

  6. 6

    Guilhon I, Teles LK, Marques M, Rodrigues Pelá R, Bechstedt F (2015) Influence of structure and thermodynamic stability on electronic properties of two-dimensional SiC, SiGe, and GeC alloys. Phys Rev B 92:075435

    Article  CAS  Google Scholar 

  7. 7

    Botana AS, Norman MR (2019) Electronic structure and magnetism of transition metal dihalides: bulk to monolayer. Phys Rev Mater 3:044001

    CAS  Article  Google Scholar 

  8. 8

    Bastos CMO, Besse R, Da Silva JLF, Sipahi GM (2019) Ab initio investigation of structural stability and exfoliation energies in transition metal dichalcogenides based on Ti-, V-, and Mo-group elements. Phys Rev Mater 3:044002

    CAS  Article  Google Scholar 

  9. 9

    Geim AK, Novoselov KS (2007) Graphene: mind the gap. Nat Mater 6:720–721

    Article  CAS  Google Scholar 

  10. 10

    Berger C, Song Z, Li X, Wu X, Brown N, Naud CC, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WAD (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    CAS  Article  Google Scholar 

  11. 11

    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    CAS  Article  Google Scholar 

  12. 12

    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Article  Google Scholar 

  13. 13

    Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    CAS  Article  Google Scholar 

  14. 14

    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    CAS  Article  Google Scholar 

  15. 15

    Phuc HV, Ilyasov VV, Hieu NN, Amin B, Nguyen CV (2018) Van der Waals graphene/g-GaSe heterostructure: tuning the electronic properties and Schottky barrier by interlayer coupling, biaxial strain, and electric gating. J Alloys Compd 750:765–773

    CAS  Article  Google Scholar 

  16. 16

    Bazylewski PF, Nguyen VL, Bauer RP, Hunt AH, McDermott EJ, Leedahl BD, Kukharenko AI, Cholakh SO, Kurmaev EZ, Blaha P, Moewes A, Lee YH, Chang GS (2015) Selective area band engineering of graphene using cobalt-mediated oxidation. Sci Rep 5:15380

    CAS  Article  Google Scholar 

  17. 17

    Sun M, Chou JP, Ren Q, Zhao Y, Yu J, Tang W (2017) Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN. Appl Phys Lett 110:173105

    Article  CAS  Google Scholar 

  18. 18

    Cui Z, Bai KF, Wang X, Li EL, Zheng JS (2020) Electronic, magnetism, and optical properties of transition metals adsorbed g-GaN. Physica E 118:113871

    CAS  Article  Google Scholar 

  19. 19

    Chen Q, Hu H, Chen X, Wang J (2011) Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations. Appl Phys Lett 98:053102

    Article  CAS  Google Scholar 

  20. 20

    Amorim RG, Zhong X, Mukhopadhyay S, Pandey R, Rocha AR, Karn SP (2013) Strain-and electric field-induced band gap modulation in nitride nanomembranes. J Phys-Condens Mat 25:195801

    Article  CAS  Google Scholar 

  21. 21

    Meng R, Jiang J, Liang Q, Yang Q, Tan C, Sun X, Chen X (2016) Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications. Sci China Mater 59:1027–1036

    CAS  Article  Google Scholar 

  22. 22

    Mogulkoc A, Mogulkoc Y, Modarresi M, Alkan B (2018) Electronic structure and optical properties of novel monolayer gallium nitride and boron phosphide heterobilayers. Phys Chem Chem Phys 20:28124–28134

    CAS  Article  Google Scholar 

  23. 23

    Balushi ZYA, Wang K, Ghosh RK, Vila RA, Eichfeld SM, Caldwell JD, Qin X, Lin YC, DeSario PA, Stone G, Subramanian S, Paul DF, Wallace RM, Datta S, Redwing JM, Robinson JA (2016) Two-dimensional gallium nitride realized via graphene encapsulation. Nat Mater 15:1166–1171

    Article  CAS  Google Scholar 

  24. 24

    Yu Y, Fong PWK, Wang S, Surya C (2016) Fabrication of WS2/GaN p–n junction by Wafer-scale WS2 thin film transfer. Sci Rep 6:37833

    CAS  Article  Google Scholar 

  25. 25

    Aji AS, Solís-Fernández P, Ji HG (2017) High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Adv Funct Mater 27:1703448

    Article  CAS  Google Scholar 

  26. 26

    Alexeev EM, Ruiz-Tijerina DA, Danovich M, Hamer MJ, Terry DJ, Nayak PK, Ahn S, Pak S, Lee J, Sohn JI, Molas MR, Koperski M, Watanabe K, Taniguchi T, Novoselov KS, Gorbachev RV, Shin HS, Fal’ko VI, Tartakovskii AI (2019) Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature 567:81–86

    CAS  Article  Google Scholar 

  27. 27

    Le Ster M, Maerkl T, Kowalczyk PJ, Brown SA (2019) Moiré patterns in van der Waals heterostructures. Phys Rev B 99:075422

    Article  Google Scholar 

  28. 28

    Xia W, Dai L, Yu P, Tong X, Song W, Zhang G, Wang Z (2017) Recent progress in van der Waals heterojunctions. Nanoscale 9:4324–4365

    CAS  Article  Google Scholar 

  29. 29

    Duong DL, Yun SJ, Lee YH (2017) van der Waals layered materials: opportunities and challenges. ACS Nano 11:11803–11830

    CAS  Article  Google Scholar 

  30. 30

    Zhang F, Li W, Ma Y, Tang Y, Dai X (2017) Tuning the Schottky contacts at the graphene/WS2 interface by electric field. RSC Adv 7:29350–29356

    CAS  Article  Google Scholar 

  31. 31

    Zheng J, Li E, Ma D, Cui Z, Peng T, Wang X (2019) Effect on Schottky barrier of graphene/WS2 heterostructure with vertical electric field and biaxial strain. Phys Status Solidi B 256:1900161

    CAS  Article  Google Scholar 

  32. 32

    Wang S, Ren C, Tian H, Yu J, Sun M (2018) MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study. Phys Chem Chem Phys 20:13394–13399

    CAS  Article  Google Scholar 

  33. 33

    Nguyen CV (2018) Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating. Superlattices Microstruct 116:79–87

    CAS  Article  Google Scholar 

  34. 34

    Pham KD, Hieu NN, Phuc HV, Fedorov IA, Duque CA, Amin B, Nguyen CV (2018) Layered graphene/GaS van der Waals heterostructure: controlling the electronic properties and Schottky barrier by vertical strain. Appl Phys Lett 113:171605

    Article  CAS  Google Scholar 

  35. 35

    Vu T, Hieu NV, Phuc HV, Hieu NH, Bui HD, Idrees M, Amin B, Nguyen CV (2020) Graphene/WSeTe van der Waals heterostructure: controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Appl Surf Sci 507:145036

    CAS  Article  Google Scholar 

  36. 36

    Din H, Idrees M, Albar A, Shafiq M, Ahmad I, Nguyen CV, Amin B (2019) Rashba spin splitting and photocatalytic properties of GeC-MSSe (M = Mo, W) van der Waals heterostructures. Phys Rev B 100:165425

    CAS  Article  Google Scholar 

  37. 37

    Maji R, Bhattacharjee J (2019) Hybrid superlattices of graphene and hexagonal boron nitride: a ferromagnetic semiconductor at room temperature. Phys Rev B 99:125409

    CAS  Article  Google Scholar 

  38. 38

    Pham KD, Hieu NN, Phuc HV, Hoi BD, Ilysov VV, Amin B, Nguyen CV (2018) First principles study of the electronic properties and Schottky barrier in vertically stacked graphene on the Janus MoSeS under electric field. Comput Mater Sci 153:438–444

    CAS  Article  Google Scholar 

  39. 39

    Li R, Sun WW, Zhan C, Kent Kent PRC, Jiang DE (2019) Interfacial and electronic properties of heterostructures of MXene and graphene. Phys Rev B 99:085429

    CAS  Article  Google Scholar 

  40. 40

    Sun Z, Chu H, Li Y, Zhao S, Li G, Li D (2019) Theoretical investigation on electronic and optical properties of the graphene–MoSe2–graphene sandwich heterostructure. Mater Des 183:108129

    CAS  Article  Google Scholar 

  41. 41

    Kresse GG, Furthmüller J (1999) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  42. 42

    Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29:2044–2078

    CAS  Article  Google Scholar 

  43. 43

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Sde G, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys-Condens Mat 21:395502

    Article  Google Scholar 

  44. 44

    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:222–229

    Article  Google Scholar 

  45. 45

    Su P, Jiang Z, Chen Z, Wu W (2014) Energy decomposition scheme based on the generalized Kohn–Sham scheme. J Phys Chem A 118:2531–2542

    CAS  Article  Google Scholar 

  46. 46

    Kajihara M, Suzuki T, Shahed SMF, Komeda T, Minamitani E, Watanabe S (2016) DFT calculations on atom-specific electronic properties of G/SiC (0001). Surf Sci 647:39–44

    CAS  Article  Google Scholar 

  47. 47

    Fedorov AS, Popov ZI, Fedorov DA, Eliseeva NS, Serjantova MV, Kuzubov AA (2012) DFT investigation of the influence of ordered vacancies on elastic and magnetic properties of graphene and graphene-like SiC and BN structures. Phys Status Solidi B 249:2549–2552

    CAS  Article  Google Scholar 

  48. 48

    Yan WJ, Xie Q, Qin XM, Zhang CH, Zhang ZZ, Zhou SY (2017) First-principle analysis of photoelectric properties of silicon–carbon materials with graphene-like honeycomb structure. Comput Mater Sci 126:336–343

    CAS  Article  Google Scholar 

  49. 49

    Choe DH, West D, Zhang S (2018) Band alignment and the built-in potential of solids. Phys Rev Lett 121:196802

    CAS  Article  Google Scholar 

  50. 50

    Cui Z, Bai K, Ding Y, Wang X, Li E, Zheng J, Wang S (2020) Electronic and optical properties of janus MoSSe and ZnO vdWs heterostructures. Superlattices Microstruct 140:106445

    CAS  Article  Google Scholar 

  51. 51

    Dou W, Huang A, Shi H, Zhang X, Zheng X, Wang M, Xiao Z, Liu L, Chu PK (2018) Tunable band offsets in the BP/P4O10 van der Waals heterostructure: first-principles calculations. Phys Chem Chem Phys 20:29931–29938

    CAS  Article  Google Scholar 

  52. 52

    Mogulkoc Y, Modarresi M, Mogulkoc A, Alkan B (2019) Boron phosphide van der Waals pn junction via molecular adsorption. Phys Rev Applied 12:054036

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 51042010); and the Industrial Key Project Foundation of Shaanxi Province, China (No. 2019GY-208). The Industrial Key Project Foundation of Xi’an, China (No. GXYD14.2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enling Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised to correct Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Li, E., Cui, Z. et al. Effects of doping and biaxial strain on the electronic properties of GaN/graphene/WS2 trilayer vdW heterostructure. J Mater Sci 55, 11999–12007 (2020). https://doi.org/10.1007/s10853-020-04867-1

Download citation