Skip to main content
Log in

Microwave synthesis of phosphorus-doped graphitic carbon nitride nanosheets with enhanced electrochemiluminescence signals

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Efficient and low-cost electrode materials for the electrochemiluminescence (ECL) reaction are highly desired for the future detection technology. Herein, we report an efficient bottom-up pathway to synthesize phosphorus-doped graphitic carbon nitride nanosheets (PCNNs) by ultra-rapid microwave irradiation. When the melamine precursor is modified with a 5 wt% diammonium hydrogen phosphate, the as-synthesized PCNNs display a very thin thickness (about 2 nm), good dispersibility in water (still stable after 2 weeks), low electron-transfer resistance (7499 Ω) and suitable band gap (2.7 eV). More importantly, the ECL intensity of the optimal PCNNs at low potential (− 1.2 to 0 V) is 26.7 times stronger than that of pure graphitic carbon nitride. The key to the excellent ECL property primarily lies in the more satisfactory sheet-like structure, faster electron transfer and better water affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure. 1.
Figure. 2.
Figure. 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Scheme 2.

Similar content being viewed by others

References

  1. Yu T, Dai P, Xu J, Chen H (2016) Highly sensitive colorimetric cancer cell detection based on dual signal amplification. ACS Appl Mater Interfaces 8:4434–4441

    CAS  Google Scholar 

  2. Rivera VR, Gamez FJ, Keener WK, White JA, Poli MA (2006) Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem 353:248–256

    CAS  Google Scholar 

  3. Shang Q, Zhou Z, Shen Y, Zhang Y, Li Y, Liu S, Zhang Y (2015) Potential-modulated electrochemiluminescence of carbon nitride nanosheets for dual-signal sensing of metal ions. ACS Appl Mater Interfaces 7:23672–23678

    CAS  Google Scholar 

  4. Cheng C, Huang Y, Wang J, Zheng B, Yuan H, Xiao D (2013) Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin. Anal Chem 85:2601–2605

    CAS  Google Scholar 

  5. Huang B, Zhou X, Xue Z, Wu G, Du J, Luo D, Liu T, Ru J, Lu X (2013) Quenching of the electrochemiluminescence of Ru(bpy)32+/TPA by malachite green and crystal violet. Talanta 106:174–180

    CAS  Google Scholar 

  6. Hercules DM (1964) Chemiluminescence resulting from electrochemically generated species. Science 145:808–809

    CAS  Google Scholar 

  7. Zhou X, Zhu D, Liao Y, Liu W, Liu H, Ma Z, Xing D (2014) Synthesis, labeling and bioanalytical applications of a tris(2,2'-bipyridyl)ruthenium(II)-based electrochemiluminescence probe. at Protoc 9:1146–1159

    CAS  Google Scholar 

  8. Lei J, Ju H (2011) Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. Trends Anal Chem 30:1351–1359

    CAS  Google Scholar 

  9. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304

    CAS  Google Scholar 

  10. Jie G, Li L, Chen C, Xuan J, Zhu J (2009) Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron 24:3352–3358

    CAS  Google Scholar 

  11. Zou G, Liang G, Zhang X (2011) Strong anodic near-infrared electrochemiluminescence from CdTe quantum dots at low oxidation potentials. Chem Commun 47:10115–10117

    CAS  Google Scholar 

  12. Cai Z, Li F, Xu W, Xia S, Zeng J, He S, Chen X (2018) Colloidal CsPbBr3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions. ano Res 11:1447–1455

    CAS  Google Scholar 

  13. Wang H, Ma Q, Wang Y, Wang C, Qin D, Shan D, Chen J, Lu X (2017) Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal Chim Acta 973:34–42

    CAS  Google Scholar 

  14. Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim D, Chen G (2014) Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem 86:4188–4195

    CAS  Google Scholar 

  15. Lv Y, Chen S, Shen Y, Ji J, Zhou Q, Liu S, Zhang Y (2018) Competitive multiple-mechanism-driven electrochemiluminescent detection of 8-hydroxy-2′-deoxyguanosine. J Am Chem Soc 140:2801–2804

    CAS  Google Scholar 

  16. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y (2015) One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem Commun 51:12251–12253

    CAS  Google Scholar 

  17. Xu H, Wu Z, Wang Y, Lin C (2017) Enhanced visible-light photocatalytic activity from graphene-like boron nitride anchored on graphitic carbon nitride sheets. J Mater Sci 52:9477–9490. https://doi.org/10.1007/s10853-017-1167-6

    Article  CAS  Google Scholar 

  18. Pareek S, Quamara JK (2018) Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge separation. J Mater Sci 53:604–612. https://doi.org/10.1007/s10853-017-1506-7

    Article  CAS  Google Scholar 

  19. Barrio J, Shalom M (2018) Rational design of carbon nitride materials by supramolecular preorganization of monomers. ChemCatChem 10:5573–5586

    CAS  Google Scholar 

  20. Zou J, Yu Y, Yan W, Meng J, Zhang S, Wang J (2019) A facile route to synthesize boron-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. J Mater Sci 54:6867–6881. https://doi.org/10.1007/s10853-019-03384-0

    Article  CAS  Google Scholar 

  21. Peng G, Qin J, Volokh M, Liu C, Shalom M (2019) Graphene oxide in carbon nitride: from easily processed precursors to a composite material with enhanced photoelectrochemical activity and long-term stability. J Mater Chem A 7:11718–11723

    CAS  Google Scholar 

  22. Zhang W, Barrio J, Gervais C, Kocjan A, Yu A, Wang X, Shalom M (2018) Synthesis of carbon-nitrogen-phosphorous materials with an unprecedented high amount of phosphorous toward an efficient fire-retardant material. Angew Chem Int Ed 57:9764–9769

    CAS  Google Scholar 

  23. Zhou Z, Shen Y, Li Y, Liu A, Liu S, Zhang Y (2015) Chemical cleavage of layered carbon nitride with enhanced photoluminescent performances and photoconduction. ACSano 9:12480–12487

    CAS  Google Scholar 

  24. Xiong M, Rong Q, Meng H, Zhang X (2017) Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens Bioelectron 89:212–223

    CAS  Google Scholar 

  25. Han T, Li X, Li Y, Cao W, Wu D, Du B, Wei Q (2014) Gold nanoparticles enhanced electrochemiluminescence of graphite-like carbon nitride for the detection of Nuclear Matrix Protein 22. Sens Actuators B Chem 205:176–183

    CAS  Google Scholar 

  26. Hu L, Zheng J, Zhao K, Deng A, Li J (2018) An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac. Biosens Bioelectron 101:260–267

    CAS  Google Scholar 

  27. Ji J, Wen J, Shen Y, Lv Y, Chen Y, Liu S, Ma H, Zhang Y (2017) Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing. J Am Chem Soc 139:11698–11701

    CAS  Google Scholar 

  28. Zhang Y, Mori T, Ye J, Antonietti M (2010) Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc 132:6294–6295

    CAS  Google Scholar 

  29. Fang H, Zhang X, WuLi J, Zheng Y, Tao X (2018) Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Appl Catal B Environ 225:397–405

    CAS  Google Scholar 

  30. Guo S, Tang Y, Xie Y, Tian C, Feng Q, Zhou W, Jiang B (2017) P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl Catal B Environ 218:664–671

    CAS  Google Scholar 

  31. Fang X, Ma L, Liang K, Zhao S, Jiang Y, Ling C, Zhao T, Cheang T, Xu A (2019) The doping of phosphorus atoms into graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. J Mater Chem A 7:11506–11512

    CAS  Google Scholar 

  32. Feng Y, Wang Q, Lei J, Ju H (2015) Electrochemiluminescent DNA sensing using carbon nitride nanosheets as emitter for loading of hemin labeled single-stranded DNA. Biosens Bioelectron 73:7–12

    CAS  Google Scholar 

  33. Liu S, Wang J (2018) Tunable magnetic properties of SiC obtained by microwave heating. J Alloys Compd 731:369–374

    CAS  Google Scholar 

  34. Liu W, Jiang H, Ru Y, Zhang X, Qian J (2018) Conductive graphene–melamine sponge prepared via microwave irradiation. ACS Appl Mater Interfaces 10:24776–24783

    CAS  Google Scholar 

  35. Yu Y, Wang C, Luo L, Wang J, Meng J (2018) An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation. Chem Eng J 334:1869–1877

    CAS  Google Scholar 

  36. Yu Y, Zhou Q, Wang J (2016) The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission. Chem Commun 52:3396–3399

    CAS  Google Scholar 

  37. Yu Y, Cheng S, Wang L, Zhu W, Luo L, Xu X, Song F, Li X, Wang J (2018) Self-assembly of yolk-shell porous Fe-doped g-C3N4 microarchitectures with excellent photocatalytic performance under visible light. Sustain Mater Technol 17:e00072

    CAS  Google Scholar 

  38. Jürgens B, Irran E, Senker J, Kroll P, Müller H, Schnick W (2003) Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state MR, and theoretical studies. J Am Chem Soc 125:10288–10300

    Google Scholar 

  39. Yin L, Wang S, Yang C, Lyu S, Wang X (2019) Modulation of polymeric carbon nitrides through supramolecular preorganization for efficient photocatalytic hydrogen generation. Chemsuschem 12:3320–3325

    CAS  Google Scholar 

  40. Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456

    CAS  Google Scholar 

  41. Zhi B, Gallagher MJ, Frank BP, Lyons TY, Qiu TA, Da J, Mensch AC, Hamers RJ, Rosenzweig Z, Fairbrother DH, Haynes CL (2018) Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, photostability, and environmental impact. Carbon 129:438–449

    CAS  Google Scholar 

  42. Ma TY, Ran J, Dai S, Jaroniec M, Qiao SZ (2015) Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem Int Ed 54:4646–4650

    CAS  Google Scholar 

  43. Hu S, Ma L, You J, Li F, Fan Z, Lu G, Liu D, Gui J (2014) Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl Surf Sci 311:164–171

    CAS  Google Scholar 

  44. Wang Q, Gou H, Zhu L, Huang H, Biswas A, Chaloux BL, Epshteyn A, Yesinowski JP, Liu Z, Cody G, Ma M, Zhao Z, Fei Y, Prescher C, Greenberg E, Prakapenka VB, Strobel TA (2019) Modifying carbon nitride through extreme phosphorus substitution. ACS Mater Lett 1:14–19

    CAS  Google Scholar 

  45. Lau VW, Mesch MB, Duppel V, Blum V, Senker J, Lotsch BV (2015) Low-molecular-weight carbon nitrides for solar hydrogen evolution. J Am Chem Soc 137:1064–1072

    CAS  Google Scholar 

  46. Liu S, Sun H, O’Donnell K, Ang HM, Tade MO, Wang S (2016) Metal-free melem/g-C3N4 hybrid photocatalysts for water treatment. J Colloid Interface Sci 464:10–17

    CAS  Google Scholar 

  47. Wang S, He F, Zhao X, Zhang J, Ao Z, Wu H, Yin Y, Shi L, Xu X, Zhao C, Wang S, Sun H (2019) Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Appl Catal B Environ 257:117931

    CAS  Google Scholar 

  48. Han X, Yuan A, Yao C, Xi F, Liu J, Dong X (2019) Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets. J Mater Sci 54:1593–1605. https://doi.org/10.1007/s10853-018-29

    Article  CAS  Google Scholar 

  49. Liu S, Zhu H, Yao W, Chen K, Chen D (2017) One step synthesis of P-doped g-C3N4 with the enhanced visible light photocatalytic activity. Appl Surf Sci 430:309–315

    Google Scholar 

  50. She X, Liu L, Ji H, Mo Z, Li Y, Huang L, Du D, Xu H, Li H (2016) Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl Catal B Environ 187:144–153

    CAS  Google Scholar 

  51. Ouedraogo S, Chouchene B, Desmarets C, Gries T, Balan L, Fournet R, Medjahdi G, Bayo K, Schneider R (2018) Copper octacarboxyphthalocyanine as sensitizer of graphitic carbon nitride for efficient dye degradation under visible light irradiation. Appl Catal A Gen 563:127–136

    CAS  Google Scholar 

  52. Qiu P, Xu C, Chen H, Jiang F, Wang X, Lu R, Zhang X (2017) One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity. Appl Catal B Environ 206:319–327

    CAS  Google Scholar 

  53. Zhou Y, Zhang L, Liu J, Fan X, Wang B, Wang M, Ren W, Wang J, Li M, Shi J (2015) Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J Mater Chem A 3:3862–3867

    CAS  Google Scholar 

  54. Kumar A, Kumar P, Borkar R, BansiwalLabhsetwar A, Jain SL (2017) Metal-organic hybrid: photoreduction of CO2 using graphitic carbon nitride supported heteroleptic iridium complex under visible light irradiation. Carbon 123:371–379

    CAS  Google Scholar 

  55. Liu B, Ye L, Wang R, Yang J, Zhang Y, Guan R, Tian L, Chen X (2018) Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Appl Mater Interfaces 10:4001–4009

    CAS  Google Scholar 

  56. Jourshabani M, Shariatinia Z, Badiei A (2017) Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation. J Colloid Interface Sci 507:59–73

    CAS  Google Scholar 

  57. Zhang Y, Zhang L, Kong Q, Ge S, Yan M, Yu J (2016) Electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive detection of lead(II) ions. Anal Bioanal Chem 408:7181–7191

    CAS  Google Scholar 

  58. Xia B, Yuan Q, Chu M, Wang S, Gao R, Yang S, Liu C, Luo S (2016) Directly one-step electrochemical synthesis of graphitic carbon nitride/graphene hybrid and its application in ultrasensitive electrochemiluminescence sensing of pentachlorophenol. Sens Actuators B Chem 228:565–572

    CAS  Google Scholar 

  59. Zhou Z, Shang Q, Shen Y, Zhang L, Zhang Y, Lv Y, Li Y, Liu S, Zhang Y (2016) Chemically modulated carbon nitride nanosheets for highly selective electrochemiluminescent detection of multiple metal-ions. Anal Chem 88:6004–6010

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Program for New Century Excellent Talents in University (NECT-12–0119), the Key Project and Youth Project of Science and Technology of Tibet Autonomous Region (XZ2017ZRG-66(Z), XZ2017ZRG-49(Z)), the Science and Technology Research Project of Jiangxi Provincial Education Department (GJJ180716) and the Fundamental Research Funds for the Central Universities. The authors also thank Prof. Y. Zhang and Dr. Y. Lv for their help in the ECL tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Jiang or Jigang Wang.

Ethics declarations

Conflict of interest

There are no competing financial interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Yu, Y., Qiao, K. et al. Microwave synthesis of phosphorus-doped graphitic carbon nitride nanosheets with enhanced electrochemiluminescence signals. J Mater Sci 55, 13618–13633 (2020). https://doi.org/10.1007/s10853-020-04862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04862-6

Navigation