Fabrication and photoelectrochemical activity of hierarchically Porous TiO2–ZnO heterojunction film


For the first time, we report the fabrication of hierarchically (macro with nested meso) porous nanocrystalline TiO2–ZnO heterojunction film onto fluorine-doped tin oxide-coated glass substrate by colloidal crystal templating technique using poly(methyl methacrylate) (PMMA) spheres as template. Accordingly, the precursor solutions of titanium isopropoxide and zinc acetate dihydrate in the presence of Pluronic P123 were used to impregnate the individual solution into the template. Initially, nanocrystalline TiO2 inverse opal mesoporous film was deposited using the titanium precursor. The film was cured at 450 °C in an air atmosphere. A similar process was adopted to deposit nanocrystalline ZnO inverse opal mesoporous film onto the TiO2 to obtain hierarchically porous TiO2–ZnO heterojunction nanocrystalline film. Morphology of the fabricated films showed a periodic arrangement of macropores, whereas the microstructural analysis confirmed the presence of nested mesopores in the film network. Chemical interaction existed between TiO2 with ZnO forming the heterojunction film was ascertained by X-ray photoelectron spectroscopy. Light harvesting efficiency of the samples was studied, and the photoelectrochemical (PEC) performance of the hierarchically porous heterojunction films as photoanode showed about 5 times enhancement in photocurrent density compared to the pristine metal–oxide–semiconductor film under visible light exposure. The porous nanocrystalline hierarchically porous inverse opal heterojunction film could be used as an efficient photoanode in PEC cell.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. 1

    Lee MG, Park JS, Jang HW (2018) Solution-processed metal oxide thin film nanostructures for water splitting photoelectrodes: a review. J Korean Ceram Soc 55:185–202

    CAS  Article  Google Scholar 

  2. 2

    Cho S, Jang J-W, Lee K-H, Lee JS (2014) Research update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. Apl Mater 2:1–14

    Article  Google Scholar 

  3. 3

    Kang D, Kim TW, Kubota SR, Cardiel AC, Cha HG, Choi K-S (2015) Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem Rev 115:12839–12887

    CAS  Article  Google Scholar 

  4. 4

    Ghobadi A, Ulusoy TG, Garifullin R, Guler MO, Okyay AK (2016) A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance. Sci Rep 6:30587

    CAS  Article  Google Scholar 

  5. 5

    Liu Z, Guo K, Han J, Li Y, Cui T, Wang B, Ya J, Zhou C (2014) Dendritic TiO2 /ln2S3/AgInS2 trilaminar core–shell branched nanoarrays and the enhanced activity for photoelectrochemical water splitting. Small 10:3153–3161

    CAS  Article  Google Scholar 

  6. 6

    Yuan S, Mu J, Mao R, Li Y, Zhang Q, Wang H (2014) All-Nanoparticle self-assembly ZnO/TiO2 heterojunction thin films with remarkably enhanced photoelectrochemical activity. ACS Appl Mater Interfaces 6:5719–5725

    CAS  Article  Google Scholar 

  7. 7

    Shaheen BS, Salem GH, El-Sayed MA, Allam NK (2013) Thermal/electrochemical growth and characterization of one-dimensional ZnO/TiO2 hybrid nanoelectrodes for solar fuel production. J Phys Chem C 117:18502–18509

    CAS  Article  Google Scholar 

  8. 8

    Kamegawa T, Suzuki N, Yamashita H (2011) Design of macroporous TiO2 thin film photocatalysts with enhanced photofunctional properties. Energy Environ Sci 4:1411–1416

    CAS  Article  Google Scholar 

  9. 9

    Mandlmeier B, Szeifert MJ, Fattakhova-Rohlfing D, Amenitsch H, Bein T (2011) Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. J Am Chem Soc 133:17274–17282

    CAS  Article  Google Scholar 

  10. 10

    Eftekhari E, Broisson P, Aravindakshan N, Wu Z, Cole IS, Li X, Zhao D, Li Q (2017) Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. J Mater Chem A 5:12803–12810

    CAS  Article  Google Scholar 

  11. 11

    Yew R, Karuturi SK, Liu J, Tan HH, Wu Y, Jagadish C (2019) Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting. Opt Express 27:761–773

    CAS  Article  Google Scholar 

  12. 12

    Schroden RC, Balakrishnan N, Stein A, Ward MD (2001) Inverse opal photonic crystals a laboratory guide. A University of Minnesota Materials Research Science and Engineering Center Publication, Washington

    Google Scholar 

  13. 13

    Bera S, Pal M, Sarkar S, Jana S (2017) Hierarchically structured macro with nested mesoporous zinc indium oxide conducting film. ACS Appl Mater Interfaces 9:4420–4424

    CAS  Article  Google Scholar 

  14. 14

    Xu F, Zhu B, Cheng B, Yu J, Xu J (2018) 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Adv Opt Mater 1800911:1–8

    Google Scholar 

  15. 15

    Naskar A, Khan H, Bera S, Jana S (2017) Soft chemical synthesis, characterization and interaction of ZnO graphene nanocomposite with bovine serum albumin protein. J Mol Liq 237:113–119

    CAS  Article  Google Scholar 

  16. 16

    Bera S, Khan H, Biswas I, Jana S (2016) Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity. Appl Surf Sci 383:165–176

    CAS  Article  Google Scholar 

  17. 17

    Khan H, Seth M, Naskar A, Jana S (2018) Nano gold-coated surface patterned mesoporous titanium tin oxide sol–gel thin film: fabrication, optical and photoelectrochemical properties. J Sol Gel Sci Technol 88:359–370

    CAS  Article  Google Scholar 

  18. 18

    Khan H, Bera S, Sarkar S, Jana S (2017) Fabrication, structural evaluation, optical and photoelectrochemical properties of soft lithography based 1D/2D surface patterned indium titanium oxide sol-gel thin film. Surf Coat Technol 328:410–419

    CAS  Article  Google Scholar 

  19. 19

    Yang T, Xue J, Tan H, Xie A, Li S, Yan W, Shen Y (2018) Highly ordered ZnO/ZnFe2O4 inverse opals with binder-free heterojunction interfaces for high performance photoelectrochemical water splitting. J Mater Chem A 6:1210–1218

    CAS  Article  Google Scholar 

  20. 20

    Kim K, Kim M-J, Kim S-I, Jang J-H (2013) Towards visible light hydrogen generation: quantum dot-sensitization via efficient light harvesting of hybrid-TiO2. Sci Rep 3:3330

    Article  Google Scholar 

  21. 21

    Kim J, Koh JK, Kim B, Kim JH, Kim E (2012) Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells. Angew Chem Int Ed 51:6864–6869

    CAS  Article  Google Scholar 

  22. 22

    Zhou L, Zhao C, Giri B, Allen P, Xu X, Joshi H, Fan Y, Titova LV, Rao PM (2016) High light absorption and charge separation efficiency at low applied voltage from Sb-doped SnO2/BiVO4 core/shell nanorod-array photoanodes. Nano Lett 16:3463–3474

    CAS  Article  Google Scholar 

  23. 23

    Wei J, Xu R-P, Li Y-Q, Li C, Chen J-D, Zhao X-D, Xie Z-Z, Lee C-S, Zhang W-J, Tang J-X (2017) Enhanced light harvesting in perovskite solar cells by a bioinspired nanostructured back electrode. Adv Energy Mater 7:1700492

    Article  Google Scholar 

Download references


One of the authors HK thankfully acknowledges CSIR, Govt. of India, for providing his Ph.D. research fellowship. The authors also acknowledge the help rendered by Electron Microscopy Section for XRD, FESEM and TEM characterizations. The work had been done as an associated research work of 12th Five Year Plan project of CSIR (No. ESC0202).

Author information



Corresponding author

Correspondence to Sunirmal Jana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Samanta, S., Seth, M. et al. Fabrication and photoelectrochemical activity of hierarchically Porous TiO2–ZnO heterojunction film. J Mater Sci 55, 11907–11918 (2020). https://doi.org/10.1007/s10853-020-04858-2

Download citation