Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries

Abstract

Transition metal sulfides as the most prominent candidates with high theoretical capacities; however, serious agglomeration and enormous volumetric variation limit its application in lithium-ion batteries. Herein, a chemical blowing strategy for the synthesis of FeS nanoparticles encapsulated into 3D porous carbon framework via chemical vapor deposition method and subsequent sulfidation process. In the constructed architecture, the monodispersed FeS nanoparticles are fully encapsulated in graphitic carbon, simultaneously, confined in 3D architecture composed of 2D graphitic carbon nanosheets. The unique architecture provides a facilitated transport pathway, enhances electron conductivity and buffers the volumetric expansion of FeS. Consequently, the composite delivers a high reversible capacity of 1084.2 mAh g−1 at 0.1 A g−1, excellent rate capability (723.5 mAh g−1 at 1 A g−1), and outstanding cycling stability (a specific capacity of 848.3 mAh g−1 without decay is achieved at 0.5 A g−1). Therefore, the present work suggests that the novel design of 3D FeS/C material provides a strategy for achieving high-performance anodes in lithium-ion batteries.

Graphic abstract

Uniformly monodispersed FeS nanoparticles confined in 3D interconnected carbon network was synthesized by using chemical vapor deposition method and subsequent sulfidation process. The hybrid electrode exhibits excellent performance with a reversible capacity of 1084.2 mAh g−1 at 0.1 A g−1 as well as outstanding cycling stability performance of 848.3 mAh g−1 at 0.5 A g−1 after 170 cycles.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1

    Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561

    Article  CAS  Google Scholar 

  2. 2

    He JR, Chen YF, Manthiram A (2019) Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv Energy Mater 9:1900584

    Article  CAS  Google Scholar 

  3. 3

    He JR, Hartmann G, Lee M, Hwang GS, Chen YF, Manthiram A (2019) Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci 12:344–350

    CAS  Article  Google Scholar 

  4. 4

    Yu B, Chen YF, Wang ZG, Chen DJ, Wang XQ, Zhang WL et al (2020) 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries. J Power Sources 447:227364

    CAS  Article  Google Scholar 

  5. 5

    He JR, Li PJ, Lv WQ, Wen K, Chen YF, Zhang WL et al (2016) Three-dimensional hierarchically structured aerogels constructed with layered MoS2/graphene nanosheets as free-standing anodes for high-performance lithium ion batteries. Electrochim Acta 215:12–18

    CAS  Article  Google Scholar 

  6. 6

    He JR, Li Q, Chen YF, Xu C, Zhou K, Wang XQ et al (2017) Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries. Carbon 114:111–116

    CAS  Article  Google Scholar 

  7. 7

    Qi F, He JR, Chen YF, Zheng BJ, Li Q, Wang XQ et al (2017) Few-layered ReS2 nanosheets grown on carbon nanotubes: a highly efficient anode for high-performance lithium-ion batteries. Chem Eng J 315:10–17

    CAS  Article  Google Scholar 

  8. 8

    Xu C, Jing Y, He JR, Zhou K, Chen YF, Li Q et al (2017) Self-assembled interwoven CoS2/CNTs/graphene architecture as anode for high-performance lithium ion batteries. J Alloys Compd 708:1178–1183

    CAS  Article  Google Scholar 

  9. 9

    Li Q, Chen YF, He JR, Fu F, Lin J, Zhang WL (2016) Three-dimensional VS4/graphene hierarchical architecture as high-capacity anode for lithium-ion batteries. J Alloys Compd 685:294–299

    CAS  Article  Google Scholar 

  10. 10

    Hu X, Liu YJ, Chen JX, Jia JC, Zhan HB, Wen ZH (2019) FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. J Mater Chem A 7:1138–1148

    CAS  Article  Google Scholar 

  11. 11

    Qi F, Chen YF, Zheng BJ, He JR, Li Q, Wang XQ et al (2017) Hierarchical architecture of ReS2/rGO composites with enhanced electrochemical properties for lithium-ion batteries. Appl Surf Sci 413:123–128

    CAS  Article  Google Scholar 

  12. 12

    Qi F, Chen YF, Zheng BJ, He JR, Li Q, Wang XQ et al (2017) 3D chrysanthemum-like ReS2 microspheres composed of curly few-layered nanosheets with enhanced electrochemical properties for lithium-ion batteries. J Mater Sci 52:3622–3629

    CAS  Article  Google Scholar 

  13. 13

    Xie J, Carrasco J, Li RR, Shen HJ, Chen Q, Yang MH (2019) Novel 3D flower-like micro/nano-structure FeS/N-doped-C composites as advanced cathodes with high lithium storage performances. J Power Sources 431:226–231

    CAS  Article  Google Scholar 

  14. 14

    Zhu CB, Wen YR, van Aken PA, Maier J, Yu Y (2015) High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires. Adv Funct Mater 25:2335–2342

    CAS  Article  Google Scholar 

  15. 15

    Haridas AK, Jeon J, Heo J, Liu Y, Saroha R, Joo JH et al (2019) In-situ construction of iron sulfide nanoparticle loaded graphitic carbon capsules from waste biomass for sustainable lithium-ion storage. ACS Sustain Chem Eng 7:6870–6879

    CAS  Article  Google Scholar 

  16. 16

    Huang MB, Xu A, Duan HH, Wu SP (2018) Enhanced pseudocapacitance contribution to outstanding Li-storage performance for a reduced graphene oxide-wrapped FeS composite anode. J Mater Chem A 6:7155–7161

    CAS  Article  Google Scholar 

  17. 17

    Fei L, Lin QL, Yuan B, Chen G, Xie P, Li YL et al (2013) Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl Mater Interfaces 5:5330–5335

    CAS  Article  Google Scholar 

  18. 18

    Xu C, Zeng Y, Rui XH, Xiao N, Zhu JX, Zhang WY et al (2012) Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 6:4713–4721

    CAS  Article  Google Scholar 

  19. 19

    He JR, Chen YF, Manthiram A (2018) Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ Sci 11:2560–2568

    CAS  Article  Google Scholar 

  20. 20

    Ma Y, Ma YJ, Kim GT, Diemant T, Behm RJ, Geiger D et al (2019) Superior lithium storage capacity of α-MnS nanoparticles embedded in S-doped carbonaceous mesoporous frameworks. Adv Energy Mater 9:1902077

    CAS  Article  Google Scholar 

  21. 21

    He JR, Chen YF, Li PJ, Fu F, Wang ZG, Zhang WL (2015) Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries. Electrochim Acta 182:424–429

    CAS  Article  Google Scholar 

  22. 22

    Wang QH, Zhang WC, Guo C, Liu YJ, Wang C, Guo ZP (2017) In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv Funct Mater 27:1703390

    Article  CAS  Google Scholar 

  23. 23

    Bu FX, Xiao PT, Chen JD, Aly Aboud MF, Shakir I, Xu YX (2018) Rational design of three-dimensional graphene encapsulated core–shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries. J Mater Chem A 6:6414–6421

    CAS  Article  Google Scholar 

  24. 24

    Li JS, Xu XJ, Yu XT, Han X, Zhang T, Zuo Y et al (2020) Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries. ACS Appl Mater Interfaces 12:4414–4422

    CAS  Article  Google Scholar 

  25. 25

    Xu L, Hu YJ, Zhang HX, Jiang H, Li CZ (2016) Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustain Chem Eng 4:4251–4255

    CAS  Article  Google Scholar 

  26. 26

    Su QF, Lu YH, Liu SH, Zhang XC, Lin YH, Fu RW, Wu DC (2018) Nanonetwork-structured yolk-shell FeS2@C as high-performance cathode materials for Li-ion batteries. Carbon 140:433–440

    CAS  Article  Google Scholar 

  27. 27

    Chen SH, Fan L, Xu LL, Liu Q, Qin Y, Lu BG (2017) 100 K cycles: core-shell H-FeS@C based lithium-ion battery anode. Energy Storage Mater 8:20–27

    CAS  Article  Google Scholar 

  28. 28

    Wang QH, Guo C, Zhu YX, He JP, Wang HQ (2018) Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano Micro Lett 10:30–38

    Article  CAS  Google Scholar 

  29. 29

    Jia HN, Wang ZY, Zheng XH, Cai YF, Lin JH, Liang HY et al (2019) Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochim Acta 312:54–61

    CAS  Article  Google Scholar 

  30. 30

    Xu YX, Li WY, Zhang F, Zhang XL, Zhang WJ, Lee CS, Tang YB (2016) In situ incorporation of FeS nanoparticles/carbon nanosheets composite with an interconnected porous structure as a high-performance anode for lithium ion batteries. J Mater Chem A 4:3697–3703

    CAS  Article  Google Scholar 

  31. 31

    Hu X, Liu Y, Li J, Wang G, Chen J, Zhong G et al (2020) Self-assembling of conductive interlayer-expanded WS2 nanosheets into 3D hollow hierarchical microflower bud hybrids for fast and stable sodium storage. Adv Funct Mater 30:1907677

    CAS  Article  Google Scholar 

  32. 32

    Fan HH, Li HH, Guo JZ, Zheng YP, Huang KC, Fan CY et al (2018) Target construction of ultrathin graphitic carbon encapsulated FeS hierarchical microspheres featuring superior low-temperature lithium/sodium storage properties. J Mater Chem A 6:7997–8005

    CAS  Article  Google Scholar 

  33. 33

    Hou BH, Wang YY, Guo JZ, Ning QL, Xi XT, Pang WL et al (2018) Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale 10:9218–9225

    CAS  Article  Google Scholar 

  34. 34

    Cho JS, Park JS, Kang YC (2016) Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res 10:897–907

    Article  CAS  Google Scholar 

  35. 35

    Zhao JF, Syed JA, Wen XM, Lu HB, Meng XK (2019) Green synthesis of FeS anchored carbon fibers using eggshell membrane as a bio-template for energy storage application. J Alloys Compd 777:974–981

    CAS  Article  Google Scholar 

  36. 36

    Li DH, Sun YY, Chen S, Yao JY, Zhang YH, Xia YZ, Yang DJ (2018) Highly porous FeS/carbon fibers derived from Fe-carrageenan biomass: high-capacity and durable anodes for sodium-ion batteries. ACS Appl Mater Interfaces 10:17175–17182

    CAS  Article  Google Scholar 

  37. 37

    Yao YY, Zheng JC, Gong ZY, Ding ZY, Zhang J, Yu WJ et al (2019) Metal-organic framework derived flower-like FeS/C composite as an anode material in lithium-ion and sodium-ion batteries. J Alloys Compd 790:288–295

    CAS  Article  Google Scholar 

  38. 38

    Xu QT, Xue HG, Guo SP (2018) Facile preparation of FeS@GO and its outstanding electrochemical performances for lithium storage. Inorg Chem Front 5:2540–2545

    CAS  Article  Google Scholar 

  39. 39

    Liu XG, Wu YY, Li XL, Yu JY, Sun YP (2018) FeS@onion-like carbon nanocapsules embedded in amorphous carbon for the lithium ion batteries with excellent cycling stability. Ceram Int 44:13654–13661

    CAS  Article  Google Scholar 

  40. 40

    Miao X, Sun DF, Zhou XZ, Lei ZQ (2019) Designed formation of nitrogen and sulfur dual-doped hierarchically porous carbon for long-life lithium and sodium ion batteries. Chem Eng J 364:208–216

    CAS  Article  Google Scholar 

  41. 41

    Sun DF, Yang J, Yan XB (2015) Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries. Chem Commun 51:2134–2137

    CAS  Article  Google Scholar 

  42. 42

    Ouyanga T, Zhang TY, Wang HZ, Yang F, Yan J, Zhu K et al (2018) High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor. Chem Eng J 352:459–468

    Article  CAS  Google Scholar 

  43. 43

    Wu B, Song HH, Zhou JS, Chen XH (2011) Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries. Chem Commun 47:8653–8655

    CAS  Article  Google Scholar 

  44. 44

    Shi LD, Li DZ, Yu JL, Liu HC, Zhao Y, Xin HL et al (2018) Uniform core–shell nanobiscuits of Fe7S8@C for lithium-ion and sodium-ion batteries with excellent performance. J Mater Chem A 6:7967–7976

    CAS  Article  Google Scholar 

  45. 45

    Wei X, Li W, Shi J, Gu L, Yu Y (2015) FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl Mater Interfaces 7:27804–27809

    CAS  Article  Google Scholar 

  46. 46

    Zhao JG, Hu Z, Sun DZ, Jia H, Liu XM (2019) MOF-derived FeS/C nanosheets for high performance lithium ion batteries. Nanomaterials 9:492–502

    CAS  Article  Google Scholar 

  47. 47

    Guo SP, Li JC, Ma Z, Chi Y, Xue HG (2016) A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries. J Mater Sci 52:2345–2355

    Article  CAS  Google Scholar 

  48. 48

    Guo KK, Xi BJ, Wei RC, Li HB, Feng JK, Xiong SL (2020) Hierarchical microcables constructed by CoP@C ⊂ carbon framework intertwined with carbon nanotubes for efficient lithium storage. Adv Energy Mater. https://doi.org/10.1002/aenm.201902913

    Article  Google Scholar 

  49. 49

    Sun DF, Miao X, He YJ, Wang L, Zhou XZ, Ma GF, Lei ZQ (2019) 3D interconnected porous graphitic carbon@MoS2 anchored on carbonized cotton cloth as an anode for enhanced lithium storage performance. Electrochim Acta 320:134616

    CAS  Article  Google Scholar 

  50. 50

    Zhang SP, Wang G, Zhang ZL, Wang BB, Bai JT, Wang H (2019) 3D graphene networks encapsulated with ultrathin SnS nanosheets @hollow mesoporous carbon spheres nanocomposite with pseudocapacitance-enhanced lithium and sodium storage kinetics. Small 15:1900565

    Article  CAS  Google Scholar 

  51. 51

    Yang L, Hong WW, Zhang Y, Tian Y, Gao X, Zhu YR et al (2019) Hierarchical NiS2 modified with bifunctional carbon for enhanced potassium-ion storage. Adv Funct Mater 29:1903454

    CAS  Article  Google Scholar 

  52. 52

    Sun DF, Wang L, Li YL, Yang YX, Zhou XZ, Ma GF, Lei ZQ (2019) Confined metal sulfides nanoparticles into porous carbon nanosheets with surface-controlled reactions for fast and stable lithium-ion batteries. ChemElectroChem 6:4464–4470

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Guofu Ma for valuable discussions and the helps. This work was financially supported by the National Natural Science Foundation of China [51863019], the Natural Science Foundation of Gansu Province of China [1606RJZA083] and the Young Teacher Research Foundation of Northwest Normal University [NWNU-LKQN-15-11].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongfei Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1757 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miao, X., Li, H., Wang, L. et al. Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries. J Mater Sci 55, 12139–12150 (2020). https://doi.org/10.1007/s10853-020-04843-9

Download citation