Metallic Pt and PtOx dual-cocatalyst-loaded WO3 for photocatalytic production of peroxydisulfate and hydrogen peroxide

Abstract

Photocatalytic production of green oxidation reagents as an economical and environmental-friendly process is a promising strategy to replace the traditional production processes. In the present study, a series of 1.0 wt% Pt/WO3 photocatalysts with different surface chemical states of Pt were successfully fabricated. The different surface metallic Pt (Pt0) and oxidized Pt (PtOx) ratios on WO3 showed significant effects on the photocatalytic activities for strong oxidants of peroxydisulfate (\( {\text{S}}_{ 2} {\text{O}}_{8}^{2 - } \)) and hydrogen peroxide (H2O2) formations. It is proposed that surface Pt0 and PtOx functioned as reduction site for O2 reduction to H2O and oxidation site for H2O oxidation to H2O2, respectively, during the photocatalytic process. As a result, a higher surface composition of Pt0 prepared using photodeposition (PD) method led to the formation of higher amount of \( {\text{S}}_{ 2} {\text{O}}_{8}^{2 - } \). On the other hand, PtOx-loaded WO3 using impregnation (IM) method showed significant formations of \( {\text{S}}_{ 2} {\text{O}}_{8}^{2 - } \) and H2O2 simultaneously. This work provided a new idea for the design of noble metal Pt-supported WO3 for efficiently photocatalytic generation of \( {\text{S}}_{ 2} {\text{O}}_{8}^{2 - } \) and H2O2.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1

References

  1. 1

    Sayama K (2018) Production of high-value-added chemicals on oxide semiconductor photoanodes under visible light for solar chemical-conversion processes. ACS Energy Lett 3:1093–1101

    CAS  Article  Google Scholar 

  2. 2

    Ciriminna R, Albanese L, Meneguzzo F, Pagliaro M (2016) Hydrogen peroxide: a key chemical for today’s sustainable development. Chemsuschem 9:3374–3381

    CAS  Article  Google Scholar 

  3. 3

    Rahy A, Sakrout M, Manohar S, Cho S, Ferraris J, Yang DJ (2008) Polyaniline nanofiber synthesis by Co-use of ammonium peroxydisulfate and sodium hypochlorite. Chem Mater 20:4808–4814

    CAS  Article  Google Scholar 

  4. 4

    Luo H, Lin Q, Zhang X, Huang Z, Liu S, Jiang J, Xiao R, Liao X (2019) New insights into the formation and transformation of active species in nZVI/BC activated persulfate in alkaline solutions. Chem Eng J 359:1215–1223

    CAS  Article  Google Scholar 

  5. 5

    Deng Y, Ezyske CM (2011) Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res 45:6189–6194

    CAS  Article  Google Scholar 

  6. 6

    Liang C, He B (2018) A titration method for determining individual oxidant concentration in the dual sodium persulfate and hydrogen peroxide oxidation system. Chemosphere 198:297–302

    CAS  Article  Google Scholar 

  7. 7

    Desilvestro J, Gratzel M (1982) Photosynthesis of peroxodisulphate with visible light at polycrystalline WO3 anodes. J Chem Soc Chem Commun 2:107–109

    Article  Google Scholar 

  8. 8

    Huang Z, Miseki Y, Sayama K (2019) Solar-light-driven photocatalytic production of peroxydisulfate over noble-metal loaded WO3. Chem Commun 55:3813–3816

    CAS  Article  Google Scholar 

  9. 9

    Mi Q, Zhanaidarova A, Brunschwig B, Gray H, Lewis N (2012) A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ Sci 5:5694–5700

    CAS  Article  Google Scholar 

  10. 10

    Hou H, Zeng X, Zhang X (2019) Production of hydrogen peroxide through photocatalytic processes: a critical review of recent advances. Angew Chem Int Ed. https://doi.org/10.1002/anie.201911609

    Article  Google Scholar 

  11. 11

    Fuku K, Wang N, Miseki Y, Funaki T, Sayama K (2015) Photoelectrochemical reaction for the efficient production of hydrogen and high-value-added oxidation reagents. Chemsuschem 8:1593–1600

    CAS  Article  Google Scholar 

  12. 12

    Zheng H, Ou J, Strano M, Kaner R, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide-properties, synthesis, and applications. Adv Funct Mater 21:2175–2196

    CAS  Article  Google Scholar 

  13. 13

    Huang Z, Song J, Pan L, Zhang X, Wang L, Zou J (2015) Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv Mater 27:5309–5327

    CAS  Article  Google Scholar 

  14. 14

    Kim J, Lee C, Choi W (2010) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44:6849–6854

    CAS  Article  Google Scholar 

  15. 15

    Shiraishi Y, Sugano Y, Ichikawa S, Hirai T (2012) Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles. Catal Sci Technol 2:400–405

    CAS  Article  Google Scholar 

  16. 16

    Ma Z, Li P, Ye L, Wang L, Xie H, Zhou Y (2018) Selectivity reversal of photocatalytic CO2 reduction by Pt loading. Catal Sci Technol 8:5129–5132

    CAS  Article  Google Scholar 

  17. 17

    Zhou Y, Doronkin D, Zhao Z et al (2018) Photothermal catalysis over nonplasmonic Pt/TiO2 studied by operando HERFD-XANES, Resonant XES, and DRIFTS. ACS Catal 8:11398–11406

    CAS  Article  Google Scholar 

  18. 18

    Piwoński I, Kądzioła K, Kisielewska A, Soliwoda K, Wolszczak M, Lisowska K, Wrońska N, Felczak A (2011) The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings. Appl Surf Sci 257:7076–7082

    Article  CAS  Google Scholar 

  19. 19

    Oros-Ruiz S, Pedraza-Avella JA, Guzmán C, Quintana M, Moctezuma E, del Angel G, Gómez R, Pérez E (2011) Effect of gold particle size and deposition method on the photodegradation of 4-Chlorophenol by Au/TiO2. Top Catal 54:519–526

    CAS  Article  Google Scholar 

  20. 20

    Iliev V, Tomova D, Bilyarska L, Tyuliev G (2007) Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J Mol Catal A Chem 263:32–38

    CAS  Article  Google Scholar 

  21. 21

    Murcia JJ, Navío JA, Hidalgo MC (2012) Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation. Appl Catal B 126:76–85

    CAS  Article  Google Scholar 

  22. 22

    Mahlamvana F, Kriek RJ (2014) Photocatalytic reduction of platinum(II and IV) from their chloro complexes in a titanium dioxide suspension in the absence of an organic sacrificial reducing agent. Appl Catal B 148:387–393

    Article  CAS  Google Scholar 

  23. 23

    Chowdhury P, Malekshoar G, Ray M, Zhu J, Ray A (2013) Sacrificial hydrogen generation from formaldehyde with Pt/TiO2 photocatalyst in solar radiation. Ind Eng Chem Res 52:5023–5029

    CAS  Article  Google Scholar 

  24. 24

    Kriek RJ, Mahlamvana F (2012) Dependency on chloride concentration and ‘in-sphere’ oxidation of H2O for the effective TiO2-photocatalysed electron transfer from H2O to [PdCln(H2O)4−n]2−n (n = 0–4) in the absence of an added sacrificial reducing agent. Appl Catal A 423–424:28–33

    Article  CAS  Google Scholar 

  25. 25

    Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 130:7780–7781

    CAS  Article  Google Scholar 

  26. 26

    Li Y, Xing J, Chen Z et al (2013) Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters. Nat Commun 4:2500

    Article  CAS  Google Scholar 

  27. 27

    Maeda K, Xiong A, Yoshinaga T et al (2010) Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed 49:4096–4099

    CAS  Article  Google Scholar 

  28. 28

    Pang R, Teramura K, Tatsumi H, Asakura H, Hosokawa S, Tanaka T (2018) Modification of Ga2O3 by an Ag–Cr core–shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O. Chem Commun 54:1053–1056

    CAS  Article  Google Scholar 

  29. 29

    Zhu X, Yamamoto A, Imai S, Tanaka A, Kominami H, Yoshida H (2019) A silver-manganese dual co-catalyst for selective reduction of carbon dioxide into carbon monoxide over a potassium hexatitanate photocatalyst with water. Chem Commun 55:13514–13517

    CAS  Article  Google Scholar 

  30. 30

    Zhang G, Lan ZA, Lin L, Lin S, Wang X (2016) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7:3062–3066

    CAS  Article  Google Scholar 

  31. 31

    Liu Y, Ohko Y, Zhang R, Yang Y, Zhang Z (2010) Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. J Hazard Mater 184:386–391

    CAS  Article  Google Scholar 

  32. 32

    Xia L, Bai J, Li J, Zeng Q, Li X, Zhou B (2016) A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Appl Catal B 183:224–230

    CAS  Article  Google Scholar 

  33. 33

    Kowalska E, Remita H, Colbeau-Justin C, Hupka J, Belloni J (2008) Modification of titanium dioxide with platinum ions and clusters: application in photocatalysis. J Phys Chem C 112:1124–1131

    CAS  Article  Google Scholar 

  34. 34

    Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic–inorganic nanocomposite materials. Chem Mater 13:3169–3183

    CAS  Article  Google Scholar 

  35. 35

    Yu JG, Su YR, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater 17:1984–1990

    CAS  Article  Google Scholar 

  36. 36

    Kolmakov A, Potluri S, Barinov A, Menteş TO, Gregoratti L, Niño MA, Locatelli A, Kiskinova M (2008) Spectromicroscopy for addressing the surface and electron transport properties of individual 1-D nanostructures and their networks. ACS Nano 2:1993–2000

    CAS  Article  Google Scholar 

  37. 37

    Wang X, Sun M, Murugananthan M, Zhang Y, Zhang L (2020) Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds. Appl Catal B 260:118205

    CAS  Article  Google Scholar 

  38. 38

    Colton RJ, Rabalais JW (1976) Electronic structure to tungsten and some of its borides, carbides, nitrides, and oxides by x-ray electron spectroscopy. Inorg Chem 15:236–238

    CAS  Article  Google Scholar 

  39. 39

    Ebitani K, Konno H, Tanaka T, Hattori H (1992) In-situ XPS study of zirconium oxide promoted by platinum and sulfate ion. J Catal 135:60–67

    CAS  Article  Google Scholar 

  40. 40

    Duan X, Qu Z, Dong C, Qin Y (2020) Enhancement of toluene oxidation performance over Pt/MnO2@Mn3O4 catalyst with unique interfacial structure. Appl Surf Sci 503:144161

    CAS  Article  Google Scholar 

  41. 41

    Bera P, Priolkar KR, Gayen A et al (2003) Ionic dispersion of Pt over CeO2 by the combustion method: structural investigation by XRD, TEM, XPS, and EXAFS. Chem Mater 15:2049–2060

    CAS  Article  Google Scholar 

  42. 42

    Ma S, Maeda K, Abe R, Domen K (2012) Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts. Energy Environ Sci 5:8390–8397

    CAS  Article  Google Scholar 

  43. 43

    Xu T, Zheng H, Zhang P (2019) Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene. J Hazard Mater 388:121746

    Article  CAS  Google Scholar 

  44. 44

    Bianchi G, Mazza F, Mussini T (1962) Catalytic decomposition of acid hydrogen peroxide solutions on platinum, iridium, palladium and gold surfaces. Electrochim Acta 7:457–473

    CAS  Article  Google Scholar 

  45. 45

    Inde R, Liu M, Atarashi D, Sakai E, Miyauchi M (2016) Ti(IV) nanoclusters as a promoter on semiconductor photocatalysts for the oxidation of organic compounds. J Mater Chem A 4:1784–1791

    CAS  Article  Google Scholar 

  46. 46

    Zhang B, Li J, Gao Y, Chong R, Wang Z, Guo L, Zhang X, Li C (2017) To boost photocatalytic activity in selective oxidation of alcohols on ultrathin Bi2MoO6 nanoplates with Pt nanoparticles as cocatalyst. J Catal 345:96–103

    CAS  Article  Google Scholar 

  47. 47

    Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1862111), the Sichuan Provincial International Cooperation Project (2019YFH0164) and scientific research starting project of SWPU (No. 2018QHZ020). Ruiqi Wang and Cheng Wen thank the undergraduate innovation and entrepreneurship project of SWPU (No. 201910615082). Ying Zhou thank Cheung Kong Scholars Program of China and Chinese Academy of Sciences “Light of West China” Program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zeai Huang or Ying Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2896 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Huang, Z., Wang, R. et al. Metallic Pt and PtOx dual-cocatalyst-loaded WO3 for photocatalytic production of peroxydisulfate and hydrogen peroxide. J Mater Sci 55, 11829–11840 (2020). https://doi.org/10.1007/s10853-020-04837-7

Download citation