Evolution and micromechanical properties of interface structures in TiNbf/TiAl composites prepared by powder metallurgy

Abstract

TiNbf/TiAl composite has enormous potential to serve on advanced aerospace equipment, but brittle reaction products limit the further improvement of overall toughness; meanwhile, the types and contents of interface reaction products remain controversial. This study is to clarify the evolution process of interface reaction structure in TiNbf/TiAl composite and explain it from the perspective of thermodynamics. This study discovered that brittle interface can transform into a relatively ductile interface containing two kinds of α2/γ lamella colonies above the transition temperature of 1200 °C. The relative sizes of γ and α2 lamella thickness varied in two different lamellar colonies. Above 1200 °C, recrystallization process at the boundary of original TiAl particles was completed and all defects were eliminated completely either. Gibbs free energy (ΔG) of every phase (γ, α2, β and other generated intermetallics) calculated based on element distribution model is consistent with the experiment results well. Micromechanical properties tested by nanoindentation suggest that the interface in the form of lamella colonies had relieved variation amplitudes of reduced modulus Er and hardness H across the interface region which may show beneficial influences on improving toughness of TiNbf/TiAl composite.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1

    Kartavykh AV, Kaloshkin SD, Cherdyntsev VV, Gorshenkov MV, Sviridova TA, Borisova YV, Senatov FS, Maksimkin AV (2013) Application of microstructured intermetallides in turbine manufacture part 1: present state and prospects (a review). Inorgan Mater Appl Res 4:12–20

    Article  Google Scholar 

  2. 2

    Clemens H, Mayer S (2013) Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater 15(4):191–215

    CAS  Article  Google Scholar 

  3. 3

    Zan X, He YH, Wang Y, Lu ZX, Xia YM (2010) Tensile impact behavior and deformation mechanism of duplex TiAl intermetallics at elevated temperatures. J Mater Sci 45:6446–6454. https://doi.org/10.1007/s10853-010-4730-y

    CAS  Article  Google Scholar 

  4. 4

    Sun ZM, Kobayashi T, Fukumasu H, Yamamoto I, Shibue K (1998) Tensile properties and fracture toughness of a Ti-45Al-1.6Mn alloy at loading velocities of up to 12 m/s. Metall Mater Trans A 29:263–277

    Article  Google Scholar 

  5. 5

    Kim YW, Kim SL (2018) Advances in gammalloy materials-processes-application technology: successes, dilemmas, and future. J Miner Met Mater Soc 70(4):553–560

    Article  Google Scholar 

  6. 6

    Wang Q, Ding HS, Zhang HL, Chen RR, Guo JJ, Fu HZ (2018) Influence of Mn addition on the microstructure and mechanical properties of a directionally solidified γ-TiAl alloy. Mater Charact 137:133–141

    CAS  Article  Google Scholar 

  7. 7

    Loretto MH, Wu Z, Chu MQ, Saage H, Hu D, Attallah MM (2012) Deformation of microstructurally refined cast Ti46Al8Nb and Ti46Al8Ta. Intermetallics 23:1–11

    CAS  Article  Google Scholar 

  8. 8

    Chen G, Peng YB, Zheng GZ, Qi ZX, Wang MZ, Yu HC, Dong CL, Liu CT (2016) Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater 15:876–881

    CAS  Article  Google Scholar 

  9. 9

    Yu WB, Zhu K, Aman Y, Guo ZP, Xiong SM (2016) Bio-inspired design of SiCf reinforced multi layered Ti intermetallic composite. Mater Des 101:102–108

    CAS  Article  Google Scholar 

  10. 10

    Vecchio KS, Jiang FC (2016) Fracture toughness of Ceramic-fiber-reinforced metallic-intermetallic-laminate (CFR-MIL) composites. Mater Sci Eng A 649:407–416

    CAS  Article  Google Scholar 

  11. 11

    Yu WB, Zhu K, Aman Y, Guo ZP, Xiong SM (2016) Bio-inspired design of SiCf-reinforced multi-layered Ti-intermetallic composite. Mater Des 101:102–108

    CAS  Article  Google Scholar 

  12. 12

    Zhou Y, Wang Q, Han XL, Sun DL (2013) Fabrication and properties of continuous unidirectional Mo fiber reinforced TiAl composites by slurry casting and vacuum hot pressing. Compos Sci Technol 83:72–78

    CAS  Article  Google Scholar 

  13. 13

    Zhou Y, Sun DL, Wang Q, Han XL (2013) Effect of fabrication parameters on the microstructure and mechanical properties of unidirectional Mo-fiber reinforced TiAl matrix composites. Mater Sci Eng A 575:21–29

    CAS  Article  Google Scholar 

  14. 14

    Li JB, Liu B, Wang Y, Tang S, Liu Y, Lu XF (2018) A study on the Zener-Holloman parameter and fracture toughness of an Nb-particles-toughened TiAl–Nb alloy. Metals 8(287):1–13

    Google Scholar 

  15. 15

    Rao KTV, Ritchie RO (1992) Fatigue crack propagation resistance of ductile TiNb-reinforced γ-TiA1 intermetallic matrix composites. Mater Sci Eng A 153:479–485

    Article  Google Scholar 

  16. 16

    Rao KTV, Ritchie RO (1998) High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite. Acta Mater 46:4167–4180

    CAS  Article  Google Scholar 

  17. 17

    Zhu NX, Zhang TX, Cai XZ (1999) TiAl matrix composites toughened by Nb and TiNb continuous fibers. Rare Metal Mater Eng 28(1):56–59

    CAS  Google Scholar 

  18. 18

    Zhang ZB, Urbassek HM (2018) Indentation into an Al/Si composite: enhanced dislocation mobility at interface. J Mater Sci 53:799–813. https://doi.org/10.1007/s10853-017-1495-6

    CAS  Article  Google Scholar 

  19. 19

    Chu JM, Claus B, Parab N, O’Brien D, Sun T, Fezzaa K, Chen W (2018) Visualization of dynamic fiber-matrix interfacial shear debonding. J Mater Sci 53:5845–5859. https://doi.org/10.1007/s10853-017-1759-1

    CAS  Article  Google Scholar 

  20. 20

    Cao HC, Dalgleish BJ, Dève HE, Elliott C, Evans AG, Mehrabian R, Odette GR (1989) A test procedure for characterizing the toughening of brittle intermetallics by ductile reinforcements. Acta Metall 37(11):2969–2977

    CAS  Article  Google Scholar 

  21. 21

    Schuster J, Palm M (2006) Reassessment of the binary Aluminum–Titanium phase diagram. J Phase Equilibr Diffus 27(3):255–277

    CAS  Article  Google Scholar 

  22. 22

    Dève HE, Evans AG, Odette GR, Mehrabian R, Emiliani ML, Hecht RJ (1990) Ductile reinforcement toughening of γ-TiAl: Effects of debonding and ductility. Acta Metall Mater 38(8):1491–1502

    Article  Google Scholar 

  23. 23

    Li Y, Chen C (2017) Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes. J Mater Sci 52:12348–12357. https://doi.org/10.1007/s10853-017-1291-3

    CAS  Article  Google Scholar 

  24. 24

    Xiong SY, Qi WH, Huang BY, Wang MP, Li YJ (2010) Size and shape dependent Gibbs free energy and phase stability of titanium and zirconium nanoparticles. Mater Chem Phys 120(2–3):446–451

    CAS  Article  Google Scholar 

  25. 25

    Witusiewicz VT, Bondar AA, Hecht U, Velikanova TY (2009) The Al–B–Nb–Ti system: IV experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems. J Alloys Comp 47:133–161

    Article  Google Scholar 

  26. 26

    Jiang Y, Deng CP, He YH, Zhao Y, Xu NP, Zou J, Huang BY, Liu CT (2009) Reactive synthesis of microporous titanium-aluminide membranes. Mater Lett 63:22–24

    CAS  Article  Google Scholar 

  27. 27

    Lyu SY, Sun YB, Ren L, Xiao WL, Ma CL (2017) Simultaneously achieving high tensile strength and fracture toughness of Ti/Ti-Al multilayered composites. Intermetallics 90:16–22

    CAS  Article  Google Scholar 

  28. 28

    Appel F, Paul JDH, Oehring M, Fröbel U, Lorenz U (2003) Creep behavior of TiAl alloys with enhanced high-temperature capability. Metall Mater Trans A 34(10):2149–2164

    Article  Google Scholar 

  29. 29

    Herzig C, Wilger T, Przeorski T, Hisker F, Divinski SV (2001) Titanium tracer diffusion in grain boundaries of α-Ti, α2-Ti3Al, and γ-TiAl and in α2/γ interphase boundaries. Intermetallics 9(5):431–442

    CAS  Article  Google Scholar 

  30. 30

    Takeyama M, Ohmura Y, Kikuchi M, Matsuo T (1998) Phase equilibria and microstructural control of gamma TiAl based alloys. Intermetallics 6(7):643–646

    CAS  Article  Google Scholar 

  31. 31

    Wang JN, Yang J, Wang Y (2005) Grain refinement of a Ti–47Al–8Nb–2Cr alloy through heat treatments. Scr Mater 52(4):329–334

    CAS  Article  Google Scholar 

  32. 32

    Kartavykh AV, Asnis EA, Piskun NV, Statkevich II, Gorshenkov MV, Korotitskiy AV (2017) Room-temperature tensile properties of float-zone processed β-stabilized γ-TiAl (Nb, Cr, Zr) intermetallic. Mater Lett 188:88–91

    CAS  Article  Google Scholar 

  33. 33

    Yan YQ, Zhang ZQ, Luo GZ, Wang KG, Zhou L (2000) Microstructures observation and hot compressing tests of TiAl based alloy containing high Nb. Mater Sci Eng A 280:187–191

    Article  Google Scholar 

  34. 34

    Kaufman MJ, Konitzer DG, Shull RD, Fraser HL (1986) An analytical electron microscopy study of the recently reported “Ti2Al phase” in γ-TiAl alloys. Scr Metall 20(1):103–108

    CAS  Article  Google Scholar 

  35. 35

    Vasudevan VK, Stucke MA, Court SA, Fraser HL (1989) The influence of second phase Ti3Al on the deformation mechanisms in TiAl. Philos Mag Lett 59(6):299–307

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the sponsor of the National Natural Science Foundation of China (No. 51971176), the National Natural Science Foundation of China (No. 51774238) and the 2018 Joint Foundation of Ministry of Education for Equipment Pre-research (No. 6141A020332). We would like to thank the Analytical and Testing Center of Northwestern Polytechnical University for this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, R., Yang, J. et al. Evolution and micromechanical properties of interface structures in TiNbf/TiAl composites prepared by powder metallurgy. J Mater Sci 55, 12421–12433 (2020). https://doi.org/10.1007/s10853-020-04816-y

Download citation