Skip to main content
Log in

Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single-crystalline LiNi0.5Co0.2Mn0.3O2 (denoted as SC-523) with micron size had been successfully synthesized through a facile method. Electrochemical impedance spectroscopy and differential scanning calorimetry were carried out to identify the improved electrochemical performance and desired thermal stability. Even after 100 cycles, SC-523 still delivered a discharge capacity of 151.1 mA h g−1 (capacity retention with 90.3%) at 1 C in voltage range from 3.0 to 4.5 V (vs. Li/Li+), while polycrystalline spherical LiNi0.5Co0.2Mn0.3O2 (denoted as PC-523) only exhibited 141.7 mA h g−1 (capacity retention with 78.4%). Besides, SC-523 shows a higher decomposition temperature of 332.13 °C, 14.61 °C higher than that of PC-523 during the thermal decomposition. Consequently, single-crystalline particles with robust morphological integrity ensure the enhanced cycling stability and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Belharouak I, Sun YK, Liu J, Amine K (2003) Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. J Power Sources 123:247–252

    Article  CAS  Google Scholar 

  2. Kang KS, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980

    Article  CAS  Google Scholar 

  3. Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  4. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  5. Kim J, Lee H, Cha H, Yoon M, Park M, Cho J (2018) Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 8:1702028–1702053

    Article  Google Scholar 

  6. Liu H, Wolf M, Karki K, Yu Y-S, Stach EA, Cabana J, Chapman KW, Chupas PJ (2017) Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett 17:3452–3457

    Article  CAS  Google Scholar 

  7. Jung S-K, Gwon H, Hong J, Park K-Y, Seo D-H, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1300787–1300794

    Article  Google Scholar 

  8. Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). J Power Sources 258:210–217

    Article  CAS  Google Scholar 

  9. Li L, Zhang Z, Fu S, Liu Z, Liu Y (2018) Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage. J Alloy Compd 768:582–590

    Article  CAS  Google Scholar 

  10. Liang C, Kong F, Longo RC, Zhang C, Nie Y, Zheng Y, Cho K (2017) Site-dependent multicomponent doping strategy for Ni-rich LiNi1−2yCoyMnyO2 (y = 1/12) cathode materials for Li-ion batteries. J Mater Chem A 5:25303–25313

    Article  CAS  Google Scholar 

  11. Hou P, Li F, Sun Y, Li H, Xu X, Zhai T (2018) Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries. ACS Appl Mater Interfaces 10:24508–24515

    Article  CAS  Google Scholar 

  12. Kim U-H, Lee E-J, Yoon CS, Myung S-T, Sun Y-K (2016) Compositionally graded cathode material with long-term cycling stability for electric vehicles application. Adv Energy Mater 6:1601417–1601425

    Article  Google Scholar 

  13. Shi J-L, Qi R, Zhang X-D, Wang P-F, Fu W-G, Yin Y-X, Xu J, Wan L-J, Guo Y-G (2017) High-thermal- and air-stability cathode material with concentration-gradient buffer for Li-ion batteries. ACS Appl Mater Interfaces 9:42829–42835

    Article  CAS  Google Scholar 

  14. Shin M-R, Son J-T (2017) Optimization of PPy@LiNi0.6Co0.2Mn0.2O2 composite to achieve high electrochemical performance. J Nanosci Nanotechnol 17:8869–8874

    Article  CAS  Google Scholar 

  15. Qi H, Liang K, Guo W, Tian L, Wen X, Shi K, Zheng J (2017) Facile fabrication and low-cost coating of LiNi0.8Co0.15Al0.05O2 with enhanced electrochemical performance as cathode materials for lithium-ion batteries. Int J Electrochem Sci 12:5836–5844

    Article  CAS  Google Scholar 

  16. Yoo KS, Kang YH, Im KR, Kim C-S (2017) Surface modification of Li(Ni0.6Co0.2Mn0.2)O2 cathode materials by nano-Al2O3 to improve electrochemical performance in lithium-ion batteries. Materials 10:1273–1284

    Article  Google Scholar 

  17. Wu Z, Ji S, Liu T, Duan Y, Xiao S, Lin Y, Xu K, Pan F (2016) Aligned Li + tunnels in core shell Li(NixMnyCoz)O2@LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode. Nano Lett 16:6357–6363

    Article  CAS  Google Scholar 

  18. Li J, Cameron AR, Li HY, Glazier S, Xiong DJ, Chatzidakis M, Allen J, Botton GA, Dahn JR (2017) Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J Electrochem Soc 164:A1534–A1544

    Article  CAS  Google Scholar 

  19. Habibi A, Jalaly M, Rahmanifard R, Ghorbanzadeh M (2018) Solution combustion synthesis of the nanocrystalline NCM oxide for lithium-ion battery uses. Mater Res Express 5:025506–025510

    Article  Google Scholar 

  20. Huang Z-D, Liu X-M, Oh S-W, Zhang B, Ma P-C, Kim J-K (2011) Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Mater Chem 21:10777–10784

    Article  CAS  Google Scholar 

  21. Wang H, Wei Y, Wang J, Long D (2018) Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode. Electrochim Acta 269:724–732

    Article  CAS  Google Scholar 

  22. Wang L, Wu B, Mu D, Liu X, Peng Y, Xu H, Liu Q, Gai L, Wu F (2016) Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries. J Alloy Compd 674:360–367

    Article  CAS  Google Scholar 

  23. Zhou H-J, Cheng H-W, Zhao HB, Zhao KN, Zhao YF, Zhang JJ, Xu Q, Lu XG (2019) Superior stability and dynamic performance of single crystal LiNi1/3Co1/3Mn1/3O2 nanorods from beta-MnO2 template for lithium-ion batteries. J Electrochem Soc 166:A59–A67

    Article  CAS  Google Scholar 

  24. Han X, Meng Q, Sun T, Sun J (2010) Preparation and electrochemical characterization of single-crystalline spherical LiNi1/3Co1/3Mn1/3O2 powders cathode material for Li-ion batteries. J Power Sources 195:3047–3052

    Article  CAS  Google Scholar 

  25. Kimijima T, Zettsu N, Teshima K (2016) Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Cryst Growth Des 16:2618–2623

    Article  CAS  Google Scholar 

  26. Kimijima T, Zettsu N, Yubuta K, Hirata K, Kami K, Teshima K (2016) Molybdate flux growth of idiomorphic Li(Ni1/3Co1/3Mn1/3)O2 single crystals and characterization of their capabilities as cathode materials for lithium-ion batteries. J Mater Chem A 4:7289–7296

    Article  CAS  Google Scholar 

  27. Kim Y (2012) Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. ACS Appl Mater Interfaces 4:2329–2333

    Article  CAS  Google Scholar 

  28. Qu Y, Mo Y, Jia X, Zhang L, Du B, Lu Y, Li D, Chen Y (2019) Flux growth and enhanced electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material by excess lithium carbonate for lithium-ion batteries. J Alloy Compd 788:810–818

    Article  CAS  Google Scholar 

  29. Li J, Li HY, Stone W, Weber R, Hy S, Dahn JR (2017) Synthesis of single crystal LiNi0.5Mn0.3Co0.2O2 for lithium ion batteries. J Electrochem Soc 164:A3529–A3537

    Article  CAS  Google Scholar 

  30. Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522

    Article  CAS  Google Scholar 

  31. Li F, Kong L, Sun Y, Jin Y, Ho P (2018) Micron-sized monocrystalline LiNi1/3Co1/3Mn1/3O2 as high-volumetric-energy-density cathode for lithium-ion batteries. J Mater Chem A 6:12344–12352

    Article  CAS  Google Scholar 

  32. Yoon J-H, Bang H-J, Prakash J, Sun Y-K (2008) Comparative study of Li Ni1/3Co1/3Mn1/3 O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications. Mater Chem Phys 110:222–227

    Article  CAS  Google Scholar 

  33. Kabalnov AS, Shchukin ED (1992) Ostwald ripening theory: applications to fluorocarbon emulsion stability. Adv Colloid Interfaces 38:69–97

    Article  CAS  Google Scholar 

  34. Gao S, Wei W, Ma M, Qi J, Yang J, Chu S, Zhang J, Guo L (2015) Sol–gel synthesis and electrochemical properties of c-axis oriented LiCoO2 for lithium-ion batteries. RSC Adv 5:51483–51488

    Article  CAS  Google Scholar 

  35. Fu Z, Hu J, Hu W, Yang S, Luo Y (2018) Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: non-linear least-squares fitting of XPS spectra. Appl Surf Sci 441:1048–1056

    Article  CAS  Google Scholar 

  36. Hua W, Schwarz B, Knapp M, Senyshyn A, Missiul A, Mu X, Wang S, Kuebel C, Binder J-R, Indris S, Ehrenberg H (2018) (De) lithiation mechanism of hierarchically layered LiNi1/3Co1/3Mn1/3O2 cathodes during high-voltage cycling. J Electrochem Soc 166:A5025–A5032

    Article  Google Scholar 

  37. Nie M, Xia Y-F, Wang Z-B, Yu F-D, Zhang Y, Wu J, Wu B (2015) Effects of precursor particle size on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material. Ceram Int 41:15185–15192

    Article  CAS  Google Scholar 

  38. Yin C, Zhou H, Yang Z, Li J (2018) Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces 10:13625–13634

    Article  CAS  Google Scholar 

  39. Rodrigues S, Munichandraiah N, Shukla AK (2000) A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J Power Sources 87:12–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangbao Ren.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. The work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Chen, L., Huang, S. et al. Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries. J Mater Sci 55, 2913–2922 (2020). https://doi.org/10.1007/s10853-019-04133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04133-z

Navigation