Skip to main content
Log in

Controlling electronic structure of single-layered \({\hbox {HfX}}_{3}\) (\(\hbox {X=S}\), Se) trichalcogenides through systematic Zr doping

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electronic structures of \(\hbox {Hf}_{1-x}\hbox {Zr}_{x}\hbox {S}_{3}\) and \(\hbox {Hf}_{1-x}\hbox {Zr}_{x}\hbox {Se}_{3}\) trichalcogenides are investigated by first-principles calculation. In particular, step change of Zr concentration is intensively investigated. Our calculations reveal that doping of Zr atoms increase the strength of cohesion between the atoms in \(\hbox {HfX}_ 3\) (X = S, Se) monolayers, and results in occurring of energetically more stable alloys. In addition, doping of Zr atoms in \(\hbox {HfS}_3\) causes band gap bowing, which means the curve of band gap values shows quadratic nonlinearities while change from semimetal to semiconductor is observed in \(\hbox {HfSe}_3\) case. The examined band structures indicate that \(\hbox {Hf}_{1-x}\hbox {Zr}_{x}\hbox {S}_{3}\) monolayers have very suitable band gap values for water splitting and also their band edge potentials have sufficiently higher or lower positions than the required potential values for the reduction or oxidation potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M (2014) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48:56

    Google Scholar 

  2. Liu G-B, Xiao D, Yao Y, Xu X, Yao W (2015) Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev 44:2643

    CAS  Google Scholar 

  3. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9:11509

    CAS  Google Scholar 

  4. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2:17033

    CAS  Google Scholar 

  5. Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11:640

    CAS  Google Scholar 

  6. Aktürk E, Aktürk O, Ciraci S (2016) Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties. Phys Rev B 94:014115

    Google Scholar 

  7. Pumera M, Sofer Z (2017) 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv Mater 29:1605299

    Google Scholar 

  8. Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gómez- Herrero J, Ares P, Zamora F, Zhu Z, Zeng H (2018) Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev 47:982

    CAS  Google Scholar 

  9. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8:1102

    CAS  Google Scholar 

  10. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44

    CAS  Google Scholar 

  11. Singh D, Gupta SK, Sonvane Y, Lukačević I (2016) Antimonene: a monolayer material for ultraviolet optical nanodevices. J Mater Chem C 4:6386

    CAS  Google Scholar 

  12. Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225

    CAS  Google Scholar 

  13. Yorulmaz U, Ozden A, Perkgoz NK, Ay F, Sevik C (2016) Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology 27:335702

    Google Scholar 

  14. Yan C, Gong C, Wangyang P, Chu J, Hu K, Li C, Wang X, Du X, Zhai T, Li Y, Xiong J (2018) 2D group IVB transition metal dichalcogenides. Adv Funct Mater 28:1803305

    Google Scholar 

  15. Zeng Q, Liu Z (2018) Novel optoelectronic devices: transition-metal-dichalcogenide-based 2D heterostructures. Adv Electron Mater 4:1700335

    Google Scholar 

  16. Zhang X, Zhang Z, Zhou Z (2018) MXene-based materials for electrochemical energy storage. J Energy Chem 27:73–85

    Google Scholar 

  17. Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6:5449

    CAS  Google Scholar 

  18. Dolui K, Pemmaraju CD, Sanvito S (2012) Electric field effects on armchair \(\text{MoS}_{2}\) nanoribbons. ACS Nano 6:4823

    CAS  Google Scholar 

  19. Gong C, Zhang H, Wang W, Colombo L, Wallace RM, Cho K (2013) Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl Phys Let 103:053513

    Google Scholar 

  20. Shen T, Penumatcha AV, Appenzeller J (2016) Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano 10:4712

    CAS  Google Scholar 

  21. Kang M, Kim B, Ryu SH, Jung SW, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A, Kim KS (2017) Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett 17:1610

    CAS  Google Scholar 

  22. Tongay S, Narang DS, Kang J, Fan W, Ko C, Luce AV, Wang KX, Suh J, Patel K, Pathak V (2014) Two-dimensional semiconductor alloys: monolayer \(\text{Mo}_{1-x}\text{W}_x\text{Se}_2\). Appl Phys Let 104:012101

    Google Scholar 

  23. Wang Z, Liu P, Ito Y, Ning S, Tan Y, Fujita T, Hirata A, Chen M (2016) Chemical vapor deposition of monolayer \(\text{Mo}_{1-x}\text{W}_x\text{S}_2\) crystals with tunable band gaps. Sci Rep 6:21536

    CAS  Google Scholar 

  24. Huang J, Wang W, Fu Q, Yang L, Zhang K, Zhang J, Xiang B (2016) Stable electrical performance observed in large-scale monolayer \(\text{WSe}_{2(1-x)}\text{S}_{2x}\) with tunable band gap. Nanotechnology 27:13LT01

    Google Scholar 

  25. Zhao Y, Zhang Z, Ouyang G (2018) Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects. Appl Phys A 124:292

    Google Scholar 

  26. Dong J, Zhao Y, Ouyang G (2019) The effect of alloying on the band engineering of two-dimensional transition metal dichalcogenides. Physica E 105:90–96

    CAS  Google Scholar 

  27. Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F (2014) Growth of large-area 2D \(\text{MoS}_{2(1-x)}\text{Se}_{2x}\) semiconductor alloys. Adv Mater 26:2648

    CAS  Google Scholar 

  28. Li H, Duan X, Wu X, Zhuang X, Zhou H, Zhang Q, Zhu X, Hu W, Ren P, Guo P (2014) Growth of alloy \(\text{MoS}_{2x}\text{Se}_{2(1-x)}\) nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc 136:3756

    CAS  Google Scholar 

  29. Ersan F, Gokoglu G, Akturk E (2015) Adsorption and diffusion of lithium on monolayer transition metal dichalcogenides (\(\text{MoS}_{2(1-x)}\text{Se}_{2x}\)) alloys. J Phys Chem C 119:28648

    CAS  Google Scholar 

  30. Chen Y, Dumcenco DO, Zhu Y, Zhang X, Mao N, Feng Q, Zhang M, Zhang J, Tan P-H, Huang Y-S (2014) Composition-dependent Raman modes of \(\text{Mo}_{1-x}\text{W}_x\text{S}_2\) monolayer alloys. Nanoscale 6:2833

    CAS  Google Scholar 

  31. Gan L-Y, Zhang Q, Zhao Y-J, Cheng Y, Schwingenschlögl U (2014) Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys \(\text{Mo}_{1-x}\text{W}_{x}\text{X}_{2}\) (X= S, Se, and Te). Sci Rep 4:6691

    CAS  Google Scholar 

  32. Zhang M, Wu J, Zhu Y, Dumcenco DO, Hong J, Mao N, Deng S, Chen Y, Yang Y, Jin C (2014) Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8:7130

    CAS  Google Scholar 

  33. Perumal P, Ulaganathan RK, Sankar R, Liao Y-M, Sun T-M, Chu M-W, Chou FC, Chen Y-T, Shih M-H, Chen Y-F (2016) Ultra-thin layered ternary single crystals [Sn (\(\text{S}_{x}\text{Se}_{1-x}\)) 2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv Funct Mater 26:3630

    CAS  Google Scholar 

  34. Jin Y, Li X, Yang J (2015) Single layer of \(\text{MX}_3\) (M= Ti, Zr; X= S, Se, Te): a new platform for nano-electronics and optics. Phys Chem Chem Phys 17:18665

    CAS  Google Scholar 

  35. Dai J, Zeng XC (2015) Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew Chem 54:7572

    CAS  Google Scholar 

  36. Island JO, Biele R, Barawi M, Clamagirand JM, Ares JR, Sánchez C, Van Der Zant HS, Ferrer IJ, D’Agosta R, Castellanos-Gomez A (2016) Titanium trisulfide (\(\text{TiS}_3\)): a 2D semiconductor with quasi-1D optical and electronic properties. Sci Rep 6:22214

    CAS  Google Scholar 

  37. Pant A, Torun E, Chen B, Bhat S, Fan X, Wu K, Wright DP, Peeters FM, Soignard E, Sahin H (2016) Strong dichroic emission in the pseudo one dimensional material \(\text{ZrS}_{3}\). Nanoscale 8:16259

    CAS  Google Scholar 

  38. Dai J, Li M, Zeng XC (2016) Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene. Wiley Interdiscip Rev 6:211

    CAS  Google Scholar 

  39. Island JO, Molina-Mendoza AJ, Barawi M, Biele R, Flores E, Clamagirand JM, Ares JR, Sánchez C, van der Zant HS, D’Agosta R (2017) Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Materials 4:022003

    Google Scholar 

  40. Kong W, Bacaksiz C, Chen B, Wu K, Blei M, Fan X, Shen Y, Sahin H, Wright D, Narang DS (2017) Angle resolved vibrational properties of anisotropic transition metal trichalcogenide nanosheets. Nanoscale 9:4175

    CAS  Google Scholar 

  41. Zhao Q, Guo Y, Zhou Y, Yao Z, Ren Z, Bai J, Xu X (2018) Band alignments and heterostructures of monolayer transition metal trichalcogenides \(\text{MX}3\) (M= Zr, Hf; X= S, Se) and dichalcogenides \(\text{MX}_2\) (M= Tc, Re; X= S, Se) for solar applications. Nanoscale 10:3547

    CAS  Google Scholar 

  42. Island JO, Barawi M, Biele R, Almazán A, Clamagirand JM, Ares JR, Sánchez C, van der Zant HS, Álvarez JV, D’Agosta R (2015) \(\text{TiS}_3\) transistors with tailored morphology and electrical properties. Adv Mater 27:2595

    CAS  Google Scholar 

  43. Lipatov A, Wilson PM, Shekhirev M, Teeter JD, Netusil R, Sinitskii A (2015) Few-layered titanium trisulfide (\(\text{TiS}_3\)) field-effect transistors. Nanoscale 7:12291

    CAS  Google Scholar 

  44. Xie J, Wang R, Bao J, Zhang X, Zhang H, Li S, Xie Y (2014) Zirconium trisulfide ultrathin nanosheets as efficient catalysts for water oxidation in both alkaline and neutral solutions. Inorg Chem Front 1:751

    CAS  Google Scholar 

  45. Osada K, Bae S, Tanaka M, Raebiger H, Shudo K, Suzuki T (2016) Phonon properties of few-layer crystals of quasi-one-dimensional \(\text{ZrS}_{3}\) and \(\text{ZrSe}_{3}\). J Phys Chem C 120:4653

    CAS  Google Scholar 

  46. Arsentev MY, Petrov A, Missyul A, Hammouri M (2018) Exfoliation, point defects and hydrogen storage properties of monolayer \(\text{TiS}_3\): an ab initio study. RSC Adv 8:26169

    CAS  Google Scholar 

  47. Morozova NV, Korobeinikov IV, Kurochka KV, Titov AN, Ovsyannikov SV (2018) Thermoelectric properties of compressed titanium and zirconium trichalcogenides. J Phys Chemi C 122:14362. https://doi.org/10.1021/acs.jpcc.8b03716

    Article  CAS  Google Scholar 

  48. Zhou Z, Liu H, Fan D, Cao G, Sheng C (2018) High thermoelectric performance originating from the grooved bands in the ZrSe3 monolayer. ACS Appl Mater Interfaces 10:37031. https://doi.org/10.1021/acsami.8b12843

    Article  CAS  Google Scholar 

  49. Flores E, Ares JR, Ferrer IJ, Sánchez C (2016) Synthesis and characterization of a family of layered trichalcogenides for assisted hydrogen photogeneration. Physica Status Solidi Rapid Res Lett 10:802

    CAS  Google Scholar 

  50. Aierken Y, Çakır D, Peeters FM (2016) Strain enhancement of acoustic phonon limited mobility in monolayer \(\text{TiS}_3\). Phys Chem Chem Phys 18:14434

    CAS  Google Scholar 

  51. Silva-Guillén J, Canadell E, Ordejón P, Guinea F, Roldán R (2017) Anisotropic features in the electronic structure of the two-dimensional transition metal trichalcogenide \(\text{TiS}_3\): electron doping and plasmons. 2D Materials 4:025085

    Google Scholar 

  52. Biele R, Flores E, Ares JR, Sanchez C, Ferrer IJ, Rubio-Bollinger G, Castellanos-Gomez A, D’Agosta R (2018) Strain-induced band gap engineering in layered \(\text{TiS}_3\). Nano Res 11:225

    CAS  Google Scholar 

  53. Flores E, Ares J, Sánchez C, Ferrer I (2019) Ternary transition titanium-niobium trisulfide as photoanode for assisted water splitting. Catal Today 107:321–322

    Google Scholar 

  54. Ersan F, Ozaydin H, Aktürk E (2018) Influence of chalcogen composition on the structural transition and on the electronic and optical properties of the monolayer titanium trichalcogenide ordered alloys. Phys Chem Chem Phys 20:1431

    CAS  Google Scholar 

  55. Agarwal A, Qin Y, Chen B, Blei M, Wu K, Liu L, Shen Y, Wright D, Green MD, Zhuang H, Tongay S (2018) Anomalous isoelectronic chalcogen rejection in 2D anisotropic vdW \(\text{TiS}_{3(1-x)}\text{Se}_{3x}\) trichalcogenides. Nanoscale 10:15654–15660

    CAS  Google Scholar 

  56. Clementi E, Raimondi DL (1963) Atomic screening constants from SCF functions. J Chem Phys 38:2686. https://doi.org/10.1063/1.1733573

    Article  CAS  Google Scholar 

  57. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71:035109

    Google Scholar 

  58. Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2012) Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ Sci 5:5814

    CAS  Google Scholar 

  59. Baerends E (2017) From the Kohn–Sham band gap to the fundamental gap in solids. An integer electron approach. Phys Chem Chem Phys 19:15639

    CAS  Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    CAS  Google Scholar 

  61. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Google Scholar 

  62. Kuisma M, Ojanen J, Enkovaara J, Rantala TT (2010) Kohn–Sham potential with discontinuity for band gap materials. Phys Rev B 82:115106

    Google Scholar 

  63. Xu Y, Yamazaki M, Villars P (2011) Inorganic materials database for exploring the nature of material. Jpn J Appl Phys 50:11RH02

    Google Scholar 

  64. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    CAS  Google Scholar 

  65. Kresse G, Furthmüller J (1996) Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    CAS  Google Scholar 

  66. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207

    CAS  Google Scholar 

  67. Abdulsalam M, Joubert DP (2015) Structural and electronic properties of MX 3 (M= Ti, Zr and Hf; X= S, Se, Te) from first principles calculations. Eur Phys J B 88:177

    Google Scholar 

  68. Saeed Y, Kachmar A, Carignano MA (2017) First-principles study of the transport properties in bulk and monolayer \(\text{MX}_3\) (M= Ti, Zr, Hf and X= S, Se) compounds. J Phys Chem C 121:1399

    CAS  Google Scholar 

  69. Bernard JE, Zunger A (1986) Optical bowing in zinc chalcogenide semiconductor alloys. Phys Rev B 34:5992

    CAS  Google Scholar 

  70. Li M, Dai J, Zeng XC (2015) Tuning the electronic properties of transition-metal trichalcogenides via tensile strain. Nanoscale 7:15385

    CAS  Google Scholar 

  71. Kadioglu Y, Santana JA, Özaydin HD, Ersan F, Aktürk O, Aktürk E, Reboredo FA (2018) Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene. J Chem Phys 148:214706

    Google Scholar 

  72. Tran F, Ehsan S, Blaha P (2018) Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement. Phys Rev Mater 2:023802

    CAS  Google Scholar 

  73. Toroker MC, Kanan DK, Alidoust N, Isseroff LY, Liao P, Carter EA (2011) First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys Chem Chem Phys 13:16644

    CAS  Google Scholar 

Download references

Acknowledgements

This study was partly funded by Materials research by Information Integration Initiative (\(\hbox {MI}^2\hbox {I}\)) project of the Support Program for Starting Up Innovation Hub from Japan Science and Technology Agency (JST), and JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number JP17K14803. Computing resources used in this work were provided in part by Hokkaido University academic cloud,information initiative center, Hokkaido University, Sapporo, Japan and by TUBITAK ULAKBIM, High Performance and Grid Computing Center (Tr-Grid e-Infrastructure).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itsuki Miyazato.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4196 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazato, I., Sarikurt, S., Takahashi, K. et al. Controlling electronic structure of single-layered \({\hbox {HfX}}_{3}\) (\(\hbox {X=S}\), Se) trichalcogenides through systematic Zr doping. J Mater Sci 55, 660–669 (2020). https://doi.org/10.1007/s10853-019-04042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04042-1

Navigation