Skip to main content

Advertisement

Log in

Hierarchical NiCo2O4/MnO2 core–shell nanosheets arrays for flexible asymmetric supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rational construction of binder-free electrode is regarded as a promising way to improve the electrochemical performance of supercapacitor. Herein, we synthesize a hierarchical NiCo2O4/MnO2 core–shell nanosheets arrays by two-step cathodic electrodeposition method. The optimized NiCo2O4/MnO2 electrode prepared by the electrodeposition potential of − 1.8 V for 240 s shows a large specific capacitance of 3.81 F cm−2 at 2 mA cm−2. The enhanced electrochemical performance is attributed to the unique core–shell structure of NiCo2O4/MnO2 nanosheets arrays with appropriate interspaces between nanosheets that can offer more active sites and accelerate ion/electron transfer rate. Besides, the NiCo2O4/MnO2//AC flexible asymmetric supercapacitor achieves a high energy density of 2.55 mWh cm−3 with good stability (86.1% of initial capacitance can remain after 10000 cycles), indicating the perfect energy storage features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability statement

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Zhao J, Li C, Zhang Q et al (2017) An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J Mater Chem A 5:6928–6936. https://doi.org/10.1039/c7ta01348e

    Article  CAS  Google Scholar 

  2. Nagaraju G, Chandra Sekhar S, Krishna Bharat L, Yu JS (2017) Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano 11:10860–10874. https://doi.org/10.1021/acsnano.7b04368

    Article  CAS  Google Scholar 

  3. Lu Z, Chao Y, Ge Y et al (2017) High-performance hybrid carbon nanotube fibers for wearable energy storage. Nanoscale 9:5063–5071. https://doi.org/10.1039/c7nr00408g

    Article  CAS  Google Scholar 

  4. Li B, Gu P, Feng Y et al (2017) Ultrathin nickel–cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater 27:1605784. https://doi.org/10.1002/adfm.201605784

    Article  CAS  Google Scholar 

  5. Zhang Z, Chi K, Xiao F, Wang S (2015) Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J Mater Chem A 3:12828–12835. https://doi.org/10.1039/c5ta02685g

    Article  CAS  Google Scholar 

  6. Zhou J, Yu L, Deng Y, Yang Y, Hao Z, Sun M (2017) Highly ordered, ultralong Mn-based nanowire films with low contact resistance as freestanding electrodes for flexible supercapacitors with enhanced performance. ChemElectroChem 4:3061–3067. https://doi.org/10.1002/celc.201700819

    Article  CAS  Google Scholar 

  7. Raj CJ, Kim BC, Cho WJ et al (2015) Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS Appl Mater Interfaces 7:13405–13414. https://doi.org/10.1021/acsami.5b02070

    Article  CAS  Google Scholar 

  8. Wang Q, Wang X, Xu J et al (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44–51. https://doi.org/10.1016/j.nanoen.2014.05.014

    Article  CAS  Google Scholar 

  9. Cao S, Li B, Zhu R, Pang H (2019) Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem Eng J 355:602–623. https://doi.org/10.1016/j.cej.2018.08.184

    Article  CAS  Google Scholar 

  10. Liu Y-H, Xu J-L, Shen S, Cai X-L, Chen L-S, Wang S-D (2017) High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J Mater Chem A 5:9032–9041. https://doi.org/10.1039/c7ta01947e

    Article  CAS  Google Scholar 

  11. Geng P, Zheng S, Tang H et al (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1703259. https://doi.org/10.1002/aenm.201703259

    Article  CAS  Google Scholar 

  12. Mi L, Wei W, Huang S et al (2015) A nest-like Ni@Ni1.4Co1.6S2 electrode for flexible high-performance rolling supercapacitor device design. J Mater Chem A 3:20973–20982. https://doi.org/10.1039/c5ta06265a

    Article  CAS  Google Scholar 

  13. Kong D, Ren W, Cheng C, Wang Y, Huang Z, Yang HY (2015) Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor. ACS Appl Mater Interfaces 7:21334–21346. https://doi.org/10.1021/acsami.5b05908

    Article  CAS  Google Scholar 

  14. Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637. https://doi.org/10.1002/adfm.201303138

    Article  CAS  Google Scholar 

  15. Song J, Li H, Li S et al (2017) Electrochemical synthesis of MnO2 porous nanowires for flexible all-solid-state supercapacitor. New J Chem 41:3750–3757. https://doi.org/10.1039/c6nj04118c

    Article  CAS  Google Scholar 

  16. Wang J, Dou W, Zhang X et al (2017) Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors. Electrochim Acta 224:260–268. https://doi.org/10.1016/j.electacta.2016.12.073

    Article  CAS  Google Scholar 

  17. Liu T, Jiang C, You W, Yu J (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem A 5:8635–8643. https://doi.org/10.1039/c7ta00363c

    Article  CAS  Google Scholar 

  18. Guan C, Wang Y, Hu Y et al (2015) Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. J Mater Chem A 3:23283–23288. https://doi.org/10.1039/c5ta06658a

    Article  CAS  Google Scholar 

  19. Zhang G, Wang T, Yu X, Zhang H, Duan H, Lu B (2013) Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2:586–594. https://doi.org/10.1016/j.nanoen.2013.07.008

    Article  CAS  Google Scholar 

  20. Zhu L, Chang Z, Wang Y et al (2015) Core–shell MnO2@Fe2O3 nanospindles as a positive electrode for aqueous supercapacitors. J Mater Chem A 3:22066–22072. https://doi.org/10.1039/c5ta05556c

    Article  CAS  Google Scholar 

  21. Zhu SJ, Jia JQ, Wang T et al (2015) Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chem Commun 51:14840–14843. https://doi.org/10.1039/c5cc03976b

    Article  CAS  Google Scholar 

  22. Sahoo R, Roy A, Dutta S et al (2015) Liquor ammonia mediated V(V) insertion in thin Co3O4 sheets for improved pseudocapacitors with high energy density and high specific capacitance value. Chem Commun 51:15986–15989. https://doi.org/10.1039/c5cc06005b

    Article  CAS  Google Scholar 

  23. Tang CH, Yin X, Gong H (2013) Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. ACS Appl Mater Interfaces 5:10574–10582. https://doi.org/10.1021/am402436q

    Article  CAS  Google Scholar 

  24. Zheng S, Li X, Yan B et al (2017) Transition-metal (Fe Co, Ni) based metal-organic-frameworks forelectrochemical energy storage. Adv Energy Mater 7:1602733. https://doi.org/10.1002/aenm.201602733

    Article  CAS  Google Scholar 

  25. Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139. https://doi.org/10.1021/nl401086t

    Article  CAS  Google Scholar 

  26. Huang L, Xiang J, Zhang W, Chen C, Xu H, Huang Y (2015) 3D interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. J Mater Chem A 3:22081–22087. https://doi.org/10.1039/c5ta05644f

    Article  CAS  Google Scholar 

  27. Chen C, Yan D, Luo X et al (2018) Construction of core-shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 10:4662–4671. https://doi.org/10.1021/acsami.7b16271

    Article  CAS  Google Scholar 

  28. Liu L, Zhang H, Yang J, Mu Y, Wang Y (2015) Self-assembled novel dandelion-like NiCo2O4 microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries. J Mater Chem A 3:22393–22403. https://doi.org/10.1039/c5ta07110k

    Article  CAS  Google Scholar 

  29. Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36. https://doi.org/10.1016/j.jpowsour.2013.09.053

    Article  CAS  Google Scholar 

  30. Guan C, Liu X, Ren W, Li X, Cheng C, Wang J (2017) Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater 7:1602391. https://doi.org/10.1002/aenm.201602391

    Article  CAS  Google Scholar 

  31. Ma L, Shen X, Zhou H, Ji Z, Chen K, Zhu G (2015) High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chem Eng J 262:980–988. https://doi.org/10.1016/j.cej.2014.10.079

    Article  CAS  Google Scholar 

  32. Ma Z, Shao G, Fan Y, Feng M, Shen D, Wang H (2017) Fabrication of high-performance all-solid-state asymmetric supercapacitors based on stable α-MnO2@NiCo2O4 core–shell heterostructure and 3D-nanocage N-doped porous carbon. ACS Sustain Chem Eng 5:4856–4868. https://doi.org/10.1021/acssuschemeng.7b00279

    Article  CAS  Google Scholar 

  33. Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979. https://doi.org/10.1002/adma.201204128

    Article  CAS  Google Scholar 

  34. Yu L, Zhang G, Yuan C, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49:137–139. https://doi.org/10.1039/c2cc37117k

    Article  CAS  Google Scholar 

  35. Zou R, Yuen MF, Zhang Z, Hu J, Zhang W (2015) Three-dimensional networked NiCo2O4/MnO2 branched nanowire heterostructure arrays on nickel foam with enhanced supercapacitor performance. J Mater Chem A 3:1717–1723. https://doi.org/10.1039/c4ta05059b

    Article  CAS  Google Scholar 

  36. Kong S, Cheng K, Ouyang T et al (2017) Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochim Acta 226:29–39. https://doi.org/10.1016/j.electacta.2016.12.158

    Article  CAS  Google Scholar 

  37. Zhang J, Yang X, He Y et al (2016) δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J Mater Chem A 4:9088–9096. https://doi.org/10.1039/c6ta02989b

    Article  CAS  Google Scholar 

  38. Huang M, Zhang Y, Li F et al (2014) Self-assembly of mesoporous nanotubes assembled from interwoven ultrathinbirnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci Rep 4:3878. https://doi.org/10.1038/srep03878

    Article  CAS  Google Scholar 

  39. Zhang H, Li H, Wang H et al (2015) NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. J Power Sources 280:640–648. https://doi.org/10.1016/j.jpowsour.2015.01.147

    Article  CAS  Google Scholar 

  40. Lai F, Miao Y-E, Huang Y, Chung T-S, Liu T (2015) Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core–sheath nanostructures for high-performance supercapacitors. J Phys Chem C 119:13442–13450. https://doi.org/10.1021/acs.jpcc.5b02739

    Article  CAS  Google Scholar 

  41. Zhang Y, Wang B, Liu F, Cheng J, Zhang X-W, Zhang L (2016) Full synergistic contribution of electrodeposited three-dimensional NiCo2O4 @MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27:627–637. https://doi.org/10.1016/j.nanoen.2016.08.013

    Article  CAS  Google Scholar 

  42. Zhang C, Kuila T, Kim NH, Lee SH, Lee JH (2015) Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor. Carbon 89:328–339. https://doi.org/10.1016/j.carbon.2015.03.051

    Article  CAS  Google Scholar 

  43. Zhang C, Huang Y, Tang S, Deng M, Du Y (2017) High-energy all-solid-state symmetric supercapacitor based on Ni3S2 mesoporous nanosheet-decorated three-dimensional reduced graphene oxide. ACS Energ Lett 2:759–768. https://doi.org/10.1021/acsenergylett.7b00078

    Article  CAS  Google Scholar 

  44. Yu M, Cheng X, Zeng Y et al (2016) Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew Chem Int Ed 55:6762–6766. https://doi.org/10.1002/anie.201602631

    Article  CAS  Google Scholar 

  45. Zeng Y, Han Y, Zhao Y et al (2015) Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater 5:1402176. https://doi.org/10.1002/aenm.201402176

    Article  CAS  Google Scholar 

  46. Lu XF, Huang ZX, Tong YX, Li GR (2016) Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chem Sci 7:510–517. https://doi.org/10.1039/c5sc03326h

    Article  CAS  Google Scholar 

  47. Lu X, Yu M, Zhai T et al (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633. https://doi.org/10.1021/nl400760a

    Article  CAS  Google Scholar 

  48. Lu X, Yu M, Wang G et al (2013) H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater 25:267–272. https://doi.org/10.1002/adma.201203410

    Article  CAS  Google Scholar 

  49. Zhai T, Xie S, Yu M et al (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263. https://doi.org/10.1016/j.nanoen.2014.06.013

    Article  CAS  Google Scholar 

  50. Yang P, Ding Y, Lin Z et al (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736. https://doi.org/10.1021/nl404008e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51772072, 51672065, 51701057), the Natural Science Foundation of Anhui Province (1708085ME100), the Fundamental Research Funds for the Central Universities (PA2019GDQT0022, PA2019GDQT0015, JZ2019HGBZ0142). We would also like to thank the financial support from the 111 Project “New Materials and Technology for Clean Energy” (B18018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang or Jingjie Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Y., Yu, C. et al. Hierarchical NiCo2O4/MnO2 core–shell nanosheets arrays for flexible asymmetric supercapacitor. J Mater Sci 55, 688–700 (2020). https://doi.org/10.1007/s10853-019-03988-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03988-6

Navigation