Skip to main content
Log in

Polystyrene-supported dendritic mesoporous silica hybrid core/shell particles: controlled synthesis and their pore size-dependent polishing behavior

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work described a straightforward synthetic route to fabricating polymer/silica hybrid particles with controllable architectures and their advantages as abrasives. The poly(vinylpyrrolidone)-modified and divinyl benzene cross-linked polystyrene (PS) cores were synthesized via a developed soap-free emulsion polymerization, and the outer dendritic-like mesoporous silica (D-mSiO2) shells were coated onto the cores using an oil–water biphase approach combined with a selective removal of hexadecyltrimethylammonium bromide templates. The resulting core/shell PS/D-mSiO2 samples were characterized by SEM, TEM, XRD, FTIR, and nitrogen adsorption/desorption, offering comprehensive information on the composition, structure, morphology, pore size, shell thickness, and surface area. The pore size of D-mSiO2 can be controlled within the range of 3–9 nm by varying the upper oil phases, which serve as swelling agents to enlarge the mesochannels. The PS/D-mSiO2 particles can be used as novel polishing abrasives and present superior surface quality (0.16 ± 0.02 and 0.26 ± 0.03 nm of root-mean-square roughness) compared to the commercial solid SiO2 ones (0.54 ± 0.05 nm). Moreover, the PS/D-mSiO2 hybrids with an enlarged pore size result in an inferior structural stability, which is important for final surface finish and removal rate. The presented results provide not only a strategy for preparing PS/D-mSiO2 core/shell particles with tunable pore sizes, but also a regulation that can be applied to prepare other core/shell hybrids with dendritic-like mesosilica shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Gardinier TC, Kohle FFE, Peerless JS, Ma K, Turker MZ, Hinckley JA, Yingling YG, Wiesner U (2019) High-performance chromatographic characterization of surface chemical heterogeneities of fluorescent organic–inorganic hybrid core-shell silica nanoparticles. ACS Nano 13:1795–1804

    CAS  Google Scholar 

  2. Barteau KP, Ma K, Kohle FFE, Gardinier TC, Beaucage PA, Gillilan RE, Wiesner U (2019) Quantitative measure of the size dispersity in ultrasmall fluorescent organic–inorganic hybrid core-shell silica nanoparticles by small-angle X-ray scattering. Chem Mater 31:643–657

    Article  CAS  Google Scholar 

  3. Zhao S, Tao Y, Chen Y, Zhou Y, Li R, Xie L, Huang A, Jin P, Ji S (2019) Room-temperature synthesis of inorganic-organic hybrid coated VO2 nanoparticles for enhanced durability and flexible temperature-responsive near-infrared modulator application. ACS Appl Mater Interfaces 11:10254–10261

    Article  CAS  Google Scholar 

  4. Chen X, Xu J, Sun D, Jiang B, Liang F, Yang Z (2019) Emulsion interfacial synthesis of polymer/inorganic Janus particles. Langmuir 35:6032–6038

    Article  CAS  Google Scholar 

  5. Yoon C, Cho KH, Jang Y, Kim J, Lee K, Yu H, Lee S, Jang J (2018) Synthesis and electroresponse activity of porous polypyrrole/silica-titania core/shell nanoparticles. Langmuir 34:15773–15782

    Article  CAS  Google Scholar 

  6. Sarma D, Carl P, Climent E, Schneider RJ, Rurack K (2019) Multifunctional polystyrene core/silica shell microparticles with antifouling properties for bead-based multiplexed and quantitative analysis. ACS Appl Mater Interfaces 11:1321–1334

    Article  CAS  Google Scholar 

  7. Meaney SP, Follink B, Tabor RF (2018) Synthesis, characterization, and applications of polymer-silica core-shell microparticle capsules. ACS Appl Mater Interfaces 10:43068–43079

    Article  CAS  Google Scholar 

  8. Sarma D, Gawlitza K, Rurack K (2016) Polystyrene core-silica shell particles with defined nanoarchitectures as a versatile platform for suspension array Technology. Langmuir 32:3717–3727

    Article  CAS  Google Scholar 

  9. Sebastian A, Zhang F, Dodda A, May-Rawding D, Liu H, Zhang T, Terrones M, Das S (2019) Electrochemical polishing of two-dimensional materials. ACS Nano 13:78–86

    Article  CAS  Google Scholar 

  10. Armini S, Whelan CM, Maex K, Hernandez JL, Moinpour M (2007) Composite polymer-core silica-shell abrasive particles during oxide CMP: a defectivity study. J Electrochem Soc 154:H667–H671

    Article  CAS  Google Scholar 

  11. Chen Y, Long RW (2011) Polishing behavior of PS/CeO2 hybrid microspheres with controlled shell thickness on silicon dioxide CMP. Appl Surf Sci 257:8679–8685

    Article  CAS  Google Scholar 

  12. Chen A, Mu W, Chen Y (2014) Compressive elastic moduli and polishing performance of non-rigid core/shell structured PS/SiO2 composite abrasives evaluated by AFM. Appl Surf Sci 290:433–439

    Article  CAS  Google Scholar 

  13. Chen Y, Li Z, Miao N (2015) Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance. Tribol Int 82:211–217

    Article  CAS  Google Scholar 

  14. Murata J, Ueno Y, Yodogawa K, Sugiura T (2016) Polymer/CeO2–Fe3O4 multicomponent core-shell particles for high-efficiency magnetic-field-assisted polishing processes. Int J Mach Tool Manuf 101:28–34

    Article  Google Scholar 

  15. Murata J, Yodogawa K, Ban K (2017) Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane-CeO2 core-shell particles. Int J Mach Tool Manuf 114:1–7

    Article  Google Scholar 

  16. Gao B, Zhai W, Zhai Q, Zhang M (2019) Novel polystyrene/CeO2–TiO2 multicomponent core/shell abrasives for high-efficiency and high-quality photocatalytic-assisted chemical mechanical polishing of reaction-bonded silicon carbide. Appl Surf Sci 484:534–541

    Article  CAS  Google Scholar 

  17. Chen Y, Li ZF, Qin JW, Chen AL (2016) Monodispersed mesoporous silica (mSiO2) spheres as abrasives for improved chemical mechanical planarization performance. J Mater Sci 51:5811–5822. https://doi.org/10.1007/s10853-016-9882-y

    Article  CAS  Google Scholar 

  18. Ryu J, Kim W, Yun J, Lee K, Lee J, Yu H, Kim JH, Kim JJ, Jang J (2018) Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization. ACS Appl Mater Interfaces 10:11843–11851

    Article  CAS  Google Scholar 

  19. Xu L, Lei H, Wang T, Dong Y, Dai S (2019) Preparation of flower-shaped silica abrasives by double system template method and its effect on polishing performance of sapphire wafers. Ceram Int 45:8471–8476

    Article  CAS  Google Scholar 

  20. Cao X, Pan G, Huang P, Guo D, Xie G (2017) Silica-coated core-shell structured polystyrene nanospheres and their size-dependent mechanical properties. Langmuir 33:8225–8232

    Article  CAS  Google Scholar 

  21. Chen AL, Qin JW, Li ZF, Chen Y (2017) Engineering functionalized PS/mSiO2 composite particles with controlled meso-shell thickness for chemical mechanical planarization applications. J Mater Sci Mater Electron 28:284–288

    Article  CAS  Google Scholar 

  22. Chen Y, Zuo C, Ma X, Chen A (2018) Solid-silica core/mesoporous-silica shell composite abrasives: synthesis, characterization, and the effect of mesoporous shell structures on CMP. J Mater Sci Mater Electron 29:3817–3828

    Article  CAS  Google Scholar 

  23. Chen A, Mu H, Zuo C, Chen Y (2019) Fabrication, characterization, and CMP performance of dendritic mesoporous-silica composite particles with tunable pore sizes. J Alloys Compd 770:335–344

    Article  CAS  Google Scholar 

  24. Chen A, Chen Y, Zhao X, Wang Y (2019) Core/shell structured PS/mSiO2 hybrid particles: controlled preparation, mechanical property, and their size-dependent CMP performance. J Alloys Compd 779:511–520

    Article  CAS  Google Scholar 

  25. Shen D, Chen L, Yang J, Zhang R, Wei Y, Li X, Li W, Sun Z, Zhu H, Abdullah AM, Al-Enizi A, Elzatahry AA, Zhang F, Zhao D (2015) Ultradispersed palladium nanoparticles in three-dimensional dendritic mesoporous silica nanospheres: toward active and stable heterogeneous catalysts. ACS Appl Mater Interfaces 7:17450–17459

    Article  CAS  Google Scholar 

  26. Yang J, Shen D, Zhou L, Li W, Li X, Yao C, Wang R, El-Toni AM, Zhang F, Zhao D (2013) Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem Mater 25:3030–3037

    Article  CAS  Google Scholar 

  27. Sudjaipraparat N, Kaewsaneha C, Nuasaen S, Tangboriboonrat P (2017) One-pot synthesis of non-spherical hollow latex polymeric particles via seeded emulsion polymerization. Polymer 121:165–172

    Article  CAS  Google Scholar 

  28. Chen B, Deng J, Tong L, Yan W (2010) Optically active helical polyacetylene@silica hybrid organic–inorganic core/shell nanoparticles: preparation and application for enantioselective crystallization. Macromolecules 43:9613–9619

    Article  CAS  Google Scholar 

  29. Reksamunandar RP, Edikresnha D, Munir MM, Damayanti S, Khairurrijal (2017) Encapsulation of β-carotene in poly(vinylpyrrolidone) (PVP) by electrospinning technique. Procedia Eng 170:19–23

    Article  CAS  Google Scholar 

  30. Chen L, Li L, Zhang L, Xing S, Wang T, Wang YA, Wang C, Su Z (2013) Designed fabrication of unique eccentric mesoporous silica nanocluster-based core-shell nanostructures for pH-responsive drug delivery. ACS Appl Mater Interfaces 5:7282–7290

    Article  CAS  Google Scholar 

  31. Wang Y, Song H, Yang Y, Liu Y, Tang J, Yu C (2018) Kinetically controlled dendritic mesoporous silica nanoparticles: from dahlia- to pomegranate-like structures by micelle filling. Chem Mater 30:5770–5776

    Article  CAS  Google Scholar 

  32. Lim SH, Phonthammachai N, Pramana SS, White TJ (2008) Simple route to monodispersed silica-titania core-shell photocatalysts. Langmuir 24:6226–6231

    Article  CAS  Google Scholar 

  33. Yu Y, Xing J, Pang J, Jiang S, Lam K, Yang T, Xue Q, Zhang K, Wu P (2014) Facile synthesis of size controllable dendritic mesoporous silica nanoparticles. ACS Appl Mater Interfaces 6:22655–22665

    Article  CAS  Google Scholar 

  34. Huang M, Liu L, Wang S, Zhu H, Wu D, Yu Z, Zhou S (2017) Dendritic mesoporous silica nanospheres synthesized by a novel dual-templating micelle system for the preparation of functional nanomaterials. Langmuir 33:519–526

    Article  CAS  Google Scholar 

  35. Lin Z, Wang R, Ma S (2018) Theoretical model and experimental analysis of chemical mechanical polishing with the effect of slurry for abrasive removal depth and surface morphology of silicon wafer. Tribol Int 117:119–130

    Article  CAS  Google Scholar 

  36. Chen R, Li S, Wang Z, Lu X (2019) Mechanical model of single abrasive during chemical mechanical polishing: molecular dynamics simulation. Tribol Int 133:40–46

    Article  CAS  Google Scholar 

  37. Jauffrès D, Yacou C, Verdier M, Dendievel R, Ayral A (2011) Mechanical properties of hierarchical porous silica thin films: experimental characterization by nanoindentation and Finite Element modeling. Microporous Mesoporous Mater 140:120–129

    Article  Google Scholar 

  38. Jauffrès D, Martin CL, Bordia RK (2018) Design of strain tolerant porous microstructures—a case for controlled imperfection. Acta Mater 148:193–201

    Article  Google Scholar 

  39. Fakiri S, Montagne A, Rahmoun K, Iost A, Ziouche K (2018) Mechanical properties of porous silicon and oxidized porous silicon by nanoindentation technique. Mater Sci Eng A 711:470–475

    Article  CAS  Google Scholar 

  40. Basim GB, Adler JJ, Mahajan U, Singh RK, Moudgilz BM (2000) Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects. J Electrochem Soc 147:3523–3528

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project is supported by National Natural Science Foundation of China (Grant Nos. 51405038, 51575058, 51875052) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Ma, X., Cai, W. et al. Polystyrene-supported dendritic mesoporous silica hybrid core/shell particles: controlled synthesis and their pore size-dependent polishing behavior. J Mater Sci 55, 577–590 (2020). https://doi.org/10.1007/s10853-019-03960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03960-4

Navigation