Skip to main content
Log in

Tunable spin transport and quantum phase transitions in silicene materials and superlattices

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we study spin transport properties of silicene structures such as ribbons and superlattices with the Kane–Mele model. We investigate the effects of ferromagnetic and antiferromagnetic exchange fields, vertical and transverse electric fields and defects on the band structure, density of states, as well as conductance of the system. Our calculated results indicate that by applying a vertical electric field and/or an antiferromagnetic exchange field, metal–semimetal and also metal–semiconductor quantum phase transitions occur. We show that a zigzag silicene ribbon, when exposed to a transverse electric field in combination with an antiferromagnetic exchange field, behaves as a half-metal that allows one spin state electrons to move. Furthermore, under a vertical electric field and in the simultaneous presence of ferromagnetic and antiferromagnetic exchange fields applied to two half-widths of the ribbon, we observe the half-metallic phase. Our results help to control spin currents and to have new applications in silicene spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene, compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501

    Article  Google Scholar 

  2. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett 12:3507–3511

    Article  Google Scholar 

  3. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501

    Article  Google Scholar 

  4. Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer WA, Gao HJ (2013) Buckled silicene formation on Ir (111). Nano Lett 13:685–690

    Article  Google Scholar 

  5. Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227–231

    Article  Google Scholar 

  6. Ezawa M (2012) A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J Phys 14:033003

    Article  Google Scholar 

  7. Tabert CJ, Nicol EJ (2013) Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals. Phys Rev Lett 110:197402

    Article  Google Scholar 

  8. Shakouri Kh, Simchi H, Esmaeilzadeh M, Mazidabadi H, Peeters FM (2015) Tunable spin and charge transport in silicene nanoribbons. Phys Rev B 92:035413

    Article  Google Scholar 

  9. Ezawa M (2012) Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett 109:055502

    Article  Google Scholar 

  10. Khoeini F, Shakouri Kh, Peeters FM (2016) Peculiar half-metallic state in zigzag nanoribbons of MoS 2: spin filtering. Phys Rev B 94:125412

    Article  Google Scholar 

  11. Mahdavifar Maryam, Khoeini Farhad (2018) Highly tunable charge and spin transport in silicene junctions: phase transitions and half-metallic states. Nanotechnology 29:325203

    Article  Google Scholar 

  12. Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gaoa Z, Lu J (2012) Giant magnetoresistance in silicene nanoribbons. Nanoscale 4:3111–3117

    Article  Google Scholar 

  13. Pan H, Li Z, Liu CC, Zhu G, Qiao Z, Yao Y (2014) Valley-polarized quantum anomalous Hall effect in silicene. Phys Rev Lett 112:106802

    Article  Google Scholar 

  14. Wang R, Ren X, Yan Z, Jiang LJ, Sha WEI, Shan GC (2019) Graphene based functional devices: a short review. Front Phys 14:13603

    Article  Google Scholar 

  15. Khoeini F, Shokri AA, Farman H (2009) Electronic transport through superlattice-like disordered carbon nanotubes. Solid State Commun 149:874–879

    Article  Google Scholar 

  16. Khoeini Farhad, Shokri AA (2010) Electronic transport through superlattice-graphene nanoribbons. Eur J Phys B 75:505–509

    Article  Google Scholar 

  17. Shokri AA, Khoeini F (2010) Electron localization in superlattice-carbon nanotubes. Eur J Phys B 78:59–64

    Article  Google Scholar 

  18. Khoeini Farhad (2015) Combined effect of oriented strain and external magnetic field on electrical properties of superlattice-graphene nanoribbons. J Phys D Appl Phys 48:405501

    Article  Google Scholar 

  19. Khoeini Farhad (2015) Effect of uniaxial strain on electrical conductance and band gap of superlattice-graphene nanoribbons. Superlattices Microstruct 81:202–214

    Article  Google Scholar 

  20. Chen CH, Li WW, Chang YM, Lin CY, Yang SH, Xu Y, Lin YF (2018) Negative-differential-resistance devices achieved by band-structure engineering in silicene under periodic potentials. Phys Rev Appl 10:044047

    Article  Google Scholar 

  21. Kaloni TP, Tahir M, Schwingenschlögl U (2013) Quasi free-standing silicene in a superlattice with hexagonal boron nitride. Sci Rep 3:3192

    Article  Google Scholar 

  22. Jia TT, Zheng MM, Fan XY, Su Y, Li SJ, Liu HY, Chen G, Kawazoe Y (2015) Band gap on/off switching of silicene superlattice. J Phys Chem C 119:20747–20754

    Article  Google Scholar 

  23. Niu ZP, Zhang YM, Dong S (2015) Enhanced valley-resolved thermoelectric transport in a magnetic silicene superlattice. New J Phys 17:073026

    Article  Google Scholar 

  24. Missault N, Vasilopoulos P, Peeters FM, Van Duppen B (2016) Spin-and valley-dependent miniband structure and transport in silicene superlattices. Phys Rev B 93:125425

    Article  Google Scholar 

  25. Zhang Q, Chan KS, Li J (2016) Electrically controllable sudden reversals in spin and valley polarization in silicene. Sci Rep 6:33701

    Article  Google Scholar 

  26. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  27. Sancho MPL, Sancho JML, Rubio J (1984) Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J Phys F 14:1205

    Article  Google Scholar 

  28. Sancho MPL, Sancho JML, Sancho JML, Rubio J (1985) Highly convergent schemes for the calculation of bulk and surface Green functions. J Phys F 15:851

    Article  Google Scholar 

  29. Liu CC, Jiang H, Yao Y (2011) Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B 84:195430

    Article  Google Scholar 

  30. Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 77:085408

    Article  Google Scholar 

  31. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954

    Article  Google Scholar 

  32. Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nat (Lond) 459:820–823

    Article  Google Scholar 

  33. Van Duppen B, Vasilopoulos P, Peeters FM (2014) Spin and valley polarization of plasmons in silicene due to external fields. Phys Rev B 90:035142

    Article  Google Scholar 

  34. Lang XY, Zheng WT, Jiang Q (2006) Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures. Phys Rev B 73:224444

    Article  Google Scholar 

  35. Hillebrecht FU, Ohldag H, Weber NB, Bethke C, Mick U, Weiss M, Bahrdt J (2001) Magnetic moments at the surface of antiferromagnetic NiO (100). Phys Rev Lett 86:3419

    Article  Google Scholar 

  36. Duò L, Finazzi M, Ciccacci F (2010) Magnetic properties of antiferromagnetic oxide materials: surfaces, interfaces, and thin films. Wiley, Hoboken

    Book  Google Scholar 

  37. He X, Wang Y, Wu N, Caruso AN, Vescovo E, Belashchenko KD, Dowben PA, Binek C (2010) Robust isothermal electric control of exchange bias at room temperature. Nat Mater 9:579–585

    Article  Google Scholar 

  38. Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R (2011) Coherent terahertz control of antiferromagnetic spin waves. Nat Photon 5:31–38

    Article  Google Scholar 

  39. Pati SP, Al-Mahdawi M, Ye S, Shiokawa Y, Nozaki T, Sahashi M (2016) Finite-size scaling effect on Neel temperature of antiferromagnetic Cr2O3 (0001) films in exchange-coupled heterostructures. Phys Rev B 94:224417

    Article  Google Scholar 

  40. Wu SM, Zhang W, Borisov AKCP, Pearson JE, Jiang JS, Lederman D, Hoffmann A, Bhattacharya A (2016) Antiferromagnetic spin Seebeck effect. Phys Rev Lett 116:097204

    Article  Google Scholar 

  41. Son Y-W, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nat (Lond) 444:347–349

    Article  Google Scholar 

  42. Feng J-H, Li G, Meng X-F, Jian X-D, Dai Z-H, Zhao Y-C, Zhou Z (2019) Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers. Front Phys 14:43604

    Article  Google Scholar 

  43. Correa JH, Pezo A, Figueira MS (2018) Braiding of edge states in narrow zigzag graphene nanoribbons: effects of third-neighbor hopping on transport and magnetic properties. Phys Rev B 98:045419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Khoeini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoeini, F., Jafarkhani, Z. Tunable spin transport and quantum phase transitions in silicene materials and superlattices. J Mater Sci 54, 14483–14494 (2019). https://doi.org/10.1007/s10853-019-03928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03928-4

Navigation