Skip to main content

Advertisement

Log in

Chitosan-derived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel hybrid porous carbon has been synthesized by a facile method blending chitosan with gelatin in acetic acid solution. Gelatin changes the morphology of the chitosan-derived carbon materials and produces abundant micro- and mesopores with the help of KHCO3. More importantly, gelatin brings heteroatoms and pseudo-capacitance into hybrids to improve the capacitive performance as the nitrogen source. A unique tangerine pith-like morphology comes into being on the chitosan-derived hybrid porous carbon, and there are lots of interconnected micropores forming with high specific surface area of 927.17 m2 g−1. This particular morphology, high nitrogen content and specific surface area ensure the as-obtained carbon electrode wonderful capacitive performance with specific capacitance of 331 F g−1 in 6 mol L−1 KOH electrolyte at 1 A g−1, high retention of 73% and excellent capacity stability of 90% after 10000 cycles at 10 A g−1. Additionally, the chitosan-derived hybrid porous carbon shows remarkable energy density of 34 W h kg−1 with the power density of 900 W kg−1, superior to majority of the commercial devices. The simple and efficient strategy and the excellent electrochemical performance are of great significance to the large-scale application of biomass-based supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wu D, Wang Y, Wang F, Wang H, An Y, Gao Z, Fang X, Kai J (2017) Oxygen-incorporated few-layer MoS2 vertically aligned on three-dimensional graphene matrix for enhanced catalytic performances in quantum dot sensitized solar cells. Carbon 123:756–766

    Article  Google Scholar 

  2. Wang J, Ma KY, Zhang J, Liu F, Cheng JP (2017) Template-free synthesis of hierarchical hollow NiSx microspheres for supercapacitor. J Colloid Interface Sci 507:290

    Article  Google Scholar 

  3. Chen A, Yu Y, Xing T, Wang R, Zhang Y, Li Q (2015) Synthesis of graphitic carbon spheres for enhanced supercapacitor performance. J Mater Sci 50:5578–5582. https://doi.org/10.1007/s10853-015-9106-x

    Article  Google Scholar 

  4. Zhang G, Song Y, Hang Z, Jia X, Duan H, Liu J (2016) Nanotube arrays: radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv Funct Mater 26:2978

    Article  Google Scholar 

  5. Chen J, Chang B, Liu F, Wei H, Wei W, Lin H, Han S (2019) Modification of porous carbon with nitrogen elements to enhance the capacitance of supercapacitors. J Mater Sci 54:11959–11971. https://doi.org/10.1007/s10853-019-03748-6

    Article  Google Scholar 

  6. Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S (2013) Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta 107:397–405

    Article  Google Scholar 

  7. Zhao X, Gnanaseelan M, Jehnichen D, Simon F, Pionteck J (2019) Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J Mater Sci 54:10809–10824. https://doi.org/10.1007/s10853-019-03654-x

    Article  Google Scholar 

  8. Liu M, Niu J, Zhang Z, Dou M, Wang F (2018) Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51:366–372

    Article  Google Scholar 

  9. Huang J, Cao D, Lei T, Yang S, Zhou X, Xu P, Wang G (2013) Structural and electrochemical performance of Al-substituted β-Ni(OH)2 nanosheets electrodes for nickel metal hydride battery. Electrochim Acta 111:713–719

    Article  Google Scholar 

  10. Sarkar A, Chakraborty AK, Bera S, Krishnamurthy S (2018) Novel hydrothermal synthesis of CoS2/MWCNT nanohybrid electrode for supercapacitor: a systematic investigation on the influence of MWCNT. J Phys Chem C 122:18237–18246

    Article  Google Scholar 

  11. Zhang Y, Xuan L, Wang S, Li L, Dou S (2017) Bio-nanotechnology in high-performance supercapacitors. Adv Energy Mater 7:1700592

    Article  Google Scholar 

  12. Wang P, Zhang G, Chen W, Jiao H, Liu L, Wang X, Deng X, Chen Q (2018) Highly porous carbon derived from litchi pericarp for supercapacitors application. J Mater Sci Mater Electron 29:14981–14988

    Google Scholar 

  13. Lei P, Wang Y, Han H, Li X, Liu J, Lu G, Wei T, Wang X et al (2018) 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon 134:345–353

    Article  Google Scholar 

  14. Wang RT, Wang PY, Yan XB, Lang JW, Peng C, Xue QJ (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800

    Article  Google Scholar 

  15. Chao Z, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sour 258:290–296

    Article  Google Scholar 

  16. Chao W, Jiang X, Ding J, Yuan N, Yan P, Zhang R, Liu H (2016) High-performance supercapacitor based on the NaOH activated d-glucose derived carbon. NANO 11:1650075

    Article  Google Scholar 

  17. Hirotomo N, Takashi K (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498

    Article  Google Scholar 

  18. Gao Y, Zhang W, Yue Q, Gao B, Sun Y, Kong J, Zhao P (2014) Simple synthesis of hierarchical porous carbon from Enteromorpha prolifera by a self-template method for supercapacitor electrodes. J Power Sour 270:403–410

    Article  Google Scholar 

  19. Deng J, Xiong TY, Xu F, Li MM, Han CL, Gong YT, Wang HY, Wang Y (2015) Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem 17:4053–4060

    Article  Google Scholar 

  20. Yunpu Z, Yuqian D, Dongyuan Z, Fulvio PF, Mayes RT, Sheng D (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  Google Scholar 

  21. Zhang Y, Liu L, Zhang L, Yu Y, Lv H, Chen A (2019) Template-free method for fabricating carbon nanotube combined with thin N-doped porous carbon composite for supercapacitor. J Mater Sci 54:6451–6460. https://doi.org/10.1007/s10853-018-03290-x

    Article  Google Scholar 

  22. Fan M, Cheng Y, Tu W, Zhang H (2019) Fabrication of nitrogen-doped hollow carbon nanospheres with variable nitrogen contents using mixed polymer brushes as precursors. J Mater Sci 54:8121–8132. https://doi.org/10.1007/s10853-019-03320-2

    Article  Google Scholar 

  23. Li Z, Li-Zhen F, Meng-Qi Z, Hui G, Suyan Q, Markus A, Maria-Magdalena T (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206

    Article  Google Scholar 

  24. Sun Q, Li Y, He T (2019) The excellent capacitive capability for N, P-doped carbon microsphere/reduced graphene oxide nanocomposites in H2SO4/KI redox electrolyte. J Mater Sci 54:7665–7678

    Article  Google Scholar 

  25. Ferrero GA, Fuertes AB, Sevilla M (2015) N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J Mater Chem A 3:2914–2923

    Article  Google Scholar 

  26. Lee YH, Lee YF, Chang KH, Hu CC (2011) Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem Commun 13:50–53

    Article  Google Scholar 

  27. Gao S, Chen Y, Fan H, Wei X, Hu C, Luo H, Qu L (2014) Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. J Mater Chem A 2:3317–3324

    Article  Google Scholar 

  28. Maria-Magdalena T, White Titirici RJ, Brun N, Budarin VL, Su DS, Del Monte F, Clark JH, Maclachlan M (2014) Sustainable carbon materials. Chem Soc Rev 44:250–290

    Google Scholar 

  29. Liang T, Chen C, Li X, Zhang J (2016) Popcorn-derived porous carbon for energy storage and CO2 capture. Langmuir 32:8042–8049

    Article  Google Scholar 

  30. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci Technol 6:1249–1259

    Article  Google Scholar 

  31. Raymundo-Piñero E, Cadek M, Béguin F (2009) Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv Funct Mater 19:1032–1039

    Article  Google Scholar 

  32. Lota K, Acznik I, Sierczynska A, Lota G (2016) The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors. Mater Lett 173:72–75

    Article  Google Scholar 

  33. Zhang F, Liu T, Hou G, Kou T, Yue L, Guan R, Li Y (2016) Hierarchically porous carbon foams for electric double layer capacitors. Nano Res 9:2875–2888

    Article  Google Scholar 

  34. Ling Z, Yu C, Fan X, Liu S, Yang J, Zhang M, Wang G, Xiao N et al (2015) Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology 26:374003

    Article  Google Scholar 

  35. Chen Z, Kai L, Sheng L, Lu X, Fu J, Zhang X, Zhang C, Gao B (2017) Porous active carbon layer modified graphene for high-performance supercapacitor. Electrochim Acta 237:102–108

    Article  Google Scholar 

  36. Xu B, Hou S, Cao G, Feng W, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem A 22:19088–19093

    Article  Google Scholar 

  37. Yoon S-H, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I (2004) KOH activation of carbon nanofibers. Carbon 42:1723–1729

    Article  Google Scholar 

  38. Yanwu Z, Shanthi M, Stoller MD, Ganesh KJ, Weiwei C, Ferreira PJ, Adam P, Wallace RM et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537

    Article  Google Scholar 

  39. Fan X, Zhang W, Qiu J (2015) A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv Energy Mater 5:1401761

    Article  Google Scholar 

  40. Kurosaki F, Koyanaka H, Tsujimoto M, Imamura Y (2008) Shape-controlled multi-porous carbon with hierarchical micro–meso-macro pores synthesized by flash heating of wood biomass. Carbon 46:850–857

    Article  Google Scholar 

  41. Ue M (1994) Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J Electrochem Soc 141(12):3336–3342

    Article  Google Scholar 

  42. Mei L, Zhang Y, Yang L, Liu Y, Yao J (2015) Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochim Acta 166:310–319

    Article  Google Scholar 

  43. Wang H, Yi H, Zhu C, Wang X, Hong JF (2015) Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13:658–669

    Article  Google Scholar 

  44. Chao L, Wang D, Zhao J, Song H, Wei C (2017) A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors. Adv Funct Mater 27:1606219

    Article  Google Scholar 

  45. Wei H, Chen H, Ning F, Jing C, Lan G, Wei Q, Liu Y, Lin H et al (2017) Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim Acta 231:403–411

    Article  Google Scholar 

  46. Zhang Y, Liu X, Wang S, Dou SX, Li L (2016) Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J Mater Chem A 4:10869

    Article  Google Scholar 

  47. Yan W, Alsmeyer DC, Mccreery RL (2002) Raman spectroscopy of carbon materials: structural basis of observed spectra. J Mater Chem A 2:557–563

    Google Scholar 

  48. Jutao J, Xiaogang F, Qiao L, Yanru L, Zhiyang W, Kexing N, Junyan Z (2013) Identifying the active site in nitrogen-doped graphene for the VO2 +/VO (+)2 redox reaction. ACS Nano 7:4764

    Article  Google Scholar 

  49. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Feng Y (2013) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386

    Article  Google Scholar 

  50. Xiang S, Yang X, Lin X, Chang C, Que H, Mei L (2017) Nitrogen and sulfur co-doped polyurethane-based porous carbon materials as supercapacitors exhibit excellent electrochemical performance. J Solid State Electrochem 21:1457–1465

    Article  Google Scholar 

  51. Yi J, Yan Q, Wu CT, Zeng Y, Wu Y, Lu X, Tong Y (2017) Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J Power Sour 351:130–137

    Article  Google Scholar 

  52. Bin DS, Chi ZX, Li Y, Zhang K, Yang X, Sun YG, Piao JY, Cao AM et al (2017) Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. J Am Chem Soc 139:13492–13498

    Article  Google Scholar 

  53. Chen P, Yang JJ, Li SS, Wang Z, Xiao TY, Qian YH, Yu SH (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2:249–256

    Article  Google Scholar 

  54. Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B et al (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angewandte Chemie International Editon 49:7987–7991

    Article  Google Scholar 

  55. Feng H, Hang H, Dong H, Yong X, Cai Y, Lei B, Liu Y, Zheng M (2016) Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sour 302:164–173

    Article  Google Scholar 

  56. Fan Y, Yang X, Zhu B, Liu PF, Lu HT (2014) Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J Power Sour 268:584–590

    Article  Google Scholar 

  57. Kondrat S, Pérez CR, Presser V, Gogotsi Y, Kornyshev AA (2012) Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci 5:6474–6479

    Article  Google Scholar 

  58. Ullah S, Khan IA, Choucair M, Badshah A, Khan I, Nadeem MA (2015) A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material. Electrochim Acta 171:142–149

    Article  Google Scholar 

  59. Chang C, Yang X, Xiang S, Lin X, Que H, Mei L (2017) Nitrogen and sulfur co-doped glucose-based porous carbon materials with excellent electrochemical performance for supercapacitors. J Electrochem Soc 164:A1601–A1607

    Article  Google Scholar 

  60. Liang Q, Ye L, Xu Q, Huang ZH, Kang F, Yang QH (2015) Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon 94:342–348

    Article  Google Scholar 

  61. Xia Y, Zhang W, Xiao Z, Huang H, Zeng H, Chen X, Chen F, Gan Y et al (2012) Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem 22:9209–9215

    Article  Google Scholar 

  62. Zhao M, Cui X, Chen L, Xu Y, He Z, Yang S, Yi W (2018) An ordered mesoporous carbon nanosphere-encapsulated graphene network with optimized nitrogen doping for enhanced supercapacitor performance. Nanoscale 10:15379–15386

    Article  Google Scholar 

  63. Xie B, Chen Y, Yu M, Shen X, Lei H, Xie T, Zhang Y, Wu Y (2015) Carboxyl-assisted synthesis of nitrogen-doped graphene sheets for supercapacitor applications. Nanoscale Res Lett 10:332

    Article  Google Scholar 

  64. Hui S, Zhu Y, Bo Y, Wang Y, Wu YP, Du J (2016) Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J Mater Chem A 4:12088–12097

    Article  Google Scholar 

  65. Ba Y, Wei P, Pi S, Zhao Y, Mi L (2018) Nitrogen-doped hierarchical porous carbon derived from a chitosan/polyethylene glycol blend for high performance supercapacitors. RSC Adv 8:7072–7079

    Article  Google Scholar 

  66. Zhu L, Feng S, Smith RL, Qi X (2016) High-performance supercapacitor electrode materials from chitosan via hydrothermal carbonization and potassium hydroxide activation. Energy Technol 5:1–10

    Google Scholar 

  67. Li B, Cheng Y, Dong L, Wang Y, Chen J, Huang C, Wei D, Feng Y et al (2017) Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors. Carbon 122:592–603

    Article  Google Scholar 

  68. Huang J, Liang Y, Hang H, Liu S, Cai Y, Dong H, Zheng M, Yong X et al (2017) Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitor. J Mater Chem A 5:24775–24781

    Article  Google Scholar 

  69. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the International Cooperation Foundation of Qilu University of Technology (QLUTGJHZ2018023) and International Intelligent Foundation of Qilu University of Technology (QLUTGJYZ2018024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunqiang Zhang or Mei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Zhang, Y., Niu, B. et al. Chitosan-derived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode. J Mater Sci 54, 14456–14468 (2019). https://doi.org/10.1007/s10853-019-03911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03911-z

Navigation